

Ersatz User Guide 1

Ersatz User Guide
version 1.35

Jan J Barendregt

Ersatz User Guide 2

© EpiGear International Pty Ltd
ABN 51 134 897 411
Sunrise Beach, Queensland, Australia, 2009-2017

Web: www.epigear.com
Email: info@epigear.com

Ersatz User Guide 3

Contents
Contents ... 3

Introduction .. 6

Monte Carlo Simulation in Excel .. 6

Installation.. 6

Registration and license ... 6

Features .. 6

Design issues .. 7

Operation.. 7

Iterations and runs .. 8

This User Guide ... 8

Technical note .. 8

Interface and features ... 9

Introduction .. 9

Settings tab ... 9

Calculation panel ... 10

The Main menu .. 10

Special topics ... 13

Introduction .. 13

Bootstrapping and Monte Carlo Simulation .. 14

Numerical methods .. 14

Non-parametric bootstrapping ... 14

Monte Carlo Simulation ... 14

Combined parametric and non-parametric models .. 15

How much is enough? .. 15

Microsimulation ... 16

Introduction .. 16

Individual level models .. 16

Microsimulation and Excel .. 16

Microsimulation and Ersatz ... 17

Combating randomness in microsimulation .. 18

Random numbers ... 20

Introduction .. 20

Random number generators ... 20

The Ersatz RNGs ... 20

Random deviates .. 21

Common random numbers ... 23

Correlated random deviates ... 24

Correlated multinomial and Dirichlet distributions ... 24

Valid correlation matrix ... 25

Sensitivity and uncertainty analysis ... 27

Introduction .. 27

Sensitivity analysis... 27

Uncertainty analysis ... 28

Conclusion ... 28

Good modelling practice .. 29

Introduction .. 29

Rules and norms ... 29

Choosing appropriate distributions .. 30

Ersatz User Guide 4

Multiple runs .. 36

Introduction .. 36

Different interventions, assumptions, or sub-populations 36

Useful functions for multiple runs ... 37

Excel macros .. 39

Introduction .. 39

Recalculation during macro execution option ... 39

Excel macros are slow ... 39

Conditional firing ... 40

Introduction .. 40

Conditional firing option.. 40

ErConditional ... 40

Conclusion ... 40

Optimization .. 41

Introduction .. 41

Some basic concepts .. 41

Iteration or Run .. 46

Four methods ... 48

When to use what? ... 51

Documentation ... 53

Examples .. 53

Introduction .. 53

FunctionLineup .. 53

Output2Workbook ... 54

ComponentFunctions ... 54

OptimizationIt .. 55

OptimizationRun .. 55

CorrMultivariate .. 56

ConditionalStore .. 57

BreastCaMarkovSC ... 57

BreastCaMarkovMC .. 58

Survival123 .. 59

BreastCaMicro ... 59

BreastCaMicroUnc .. 59

ResinBias ... 59

Error messages ... 61

Fatal errors ... 61

Non-fatal errors .. 63

Trouble shooting .. 64

Known issues ... 66

Technical appendix .. 67

Installation issues ... 67

Software ... 68

Statistical and other scientific sources ... 69

Version history ... 70

Ersatz version 1.34 ... 70

Ersatz version 1.33 ... 70

Ersatz version 1.32 ... 70

Ersatz version 1.31 ... 70

Ersatz User Guide 5

Ersatz version 1.3 ... 71

Ersatz version 1.2 ... 71

Ersatz version 1.13 ... 72

Ersatz version 1.12 ... 72

Ersatz version 1.11 ... 72

Ersatz version 1.1 ... 73

Ersatz version 1.01 ... 73

About the author .. 75

References .. 76

Ersatz User Guide 6

Introduction

Monte Carlo Simulation in Excel

Ersatz is a tool for Monte Carlo simulation in Microsoft Excel. It extends Excel with a
range of functions that offer statistical distributions, the ability to draw randomly from
these distributions, and repeat this a large number of times while gathering results in
output functions. Applications include uncertainty analysis (aka ‘risk analysis’, and
‘probabilistic sensitivity analysis’), microsimulation, bootstrapping, and probabilistic
bias quantification. Ersatz is a generic tool, but offers some special functions that
reveal its origin in health economic modelling. A list of the available Ersatz functions
is in the Ersatz Function Overview document.

Installation

Ersatz 1.3 has been tested with Excel 2000, 2003, 2007, 2010, 2013, and 20161.
Installation is usually straightforward: make sure Excel is not running, and run the
ErsatzSetup executable. If all goes well, the functions will be visible in the Excel
Function Wizard (in the function category ‘Ersatz’) and you can open the example
spreadsheets without seeing any “#NAME?” errors. See the section on ‘Trouble
shooting’ when this is not the case.
The installation program installs an Excel add-in (called ‘ersatzdll.xll’) and an
executable (called ‘Ersatz.exe’), together with some documentation files and a few
example spreadsheets. These items are accessible through the Windows Start menu,
together with an Uninstall option. For a detailed discussion of the installation issues,
see the Technical Appendix below.

Registration and license

In most cases you will need to obtain a license number and release code to be able to
run Ersatz2. When you try to run Ersatz for the first time after installation it will show
its Registration form, where you must enter a valid license number and a machine
specific release code.
A license number will be issued to you after payment has been received, see the
website (www.epigear.com) for payment options. Generally, the license is a personal
one: you are granted the right to use Ersatz. When you use more than one PC, you
have the right to run Ersatz on all of them. However, for each PC you will need to
apply for a different release code. To obtain a release code, send your license number
and the machine ID reported by Ersatz to ErsatzReg@epigear.com (please use copy &
paste for the machine ID to avoid typos), we will respond as soon as possible.
Please contact Epigear (info@epigear.com) if you need a different license
arrangement.

Features

Ersatz has a number of special features:
1. Multiple run mode.
2. An option to execute Excel macros before and after each iteration and run.

1 Ersatz 1.3 actively supports the new features of Excel 2007 and higher. Ersatz supports both the 32-
bit and 64-bit versions of Excel 2010 and higher. Please note that Ersatz is not compatible with the
cloud-based Office 365 service.
2 A license number and release code are not needed for the Trial and Workshop versions of Ersatz.

Ersatz User Guide 7

3. Conditional firing of the Ersatz random functions.
4. Several options for sensitivity analysis.
5. Special functions for microsimulation, in particular discrete event simulation.
6. A distribution viewer.
7. A choice of seven different random number generators.
8. Correlated random numbers, including for the multivariate Dirichlet and

multinomial distributions.
9. Four different optimization algorithms, two deterministic and two stochastic.

These features are discussed in sections below.

Design issues

As mentioned above, Ersatz originates from a background of health economic
modelling. It has been developed with academic research in mind. This implies that 1)
transparency of the methods used is deemed important, and 2) rigour in the
application of those methods is also important.
The issue of transparency hinges on the documentation. I’ve aimed to reference all the
algorithms used, but it is very well possible that some are not referenced yet: the
documentation tends to lag behind the implementation. Please bear with me.
As for rigour: Ersatz has been designed to be rather demanding in its inputs. For
example, when the parameters of a distribution are outside their defined range, the
function will return #NUM, and no summary statistics such as mean and standard
deviation will be calculated, even if this happens in only a single instance of many
iterations. The justification of that is that if such a thing happens, there is a design
flaw in the modelling, and it is better to be confronted with that than to rely
unwittingly on outcomes that may be flawed.
Another design issue is the interface. Ersatz does not attempt to melt into Excel, but is
clearly a stand-alone application. In addition, the interface has been kept very simple
(and therefore, hopefully, easy to navigate). These choices reflect my own
preferences, which other people may not share.

Operation

Running Ersatz is done using the Ersatz executable (and not from within Excel). To
operate, start Excel, and populate the spreadsheet with at least one input random
function, and at least one ErOutput function (see the Ersatz Function Overview
document for the parameters these functions take, or use the Excel Function Wizard).
When done, start Ersatz, which will automatically connect to the running Excel
spreadsheet (it will show the name of the spreadsheet in the titlebar). Then just press
the ‘Calculate’ button for a default of 1000 iterations. When Ersatz has finished,
additional tabs will become visible with ‘Summary output’ in table form, and
histograms.
Clicking the check boxes in the Ersatz area of the Setting tab with ‘Complete output’
etc will reveal additional tabs with the corresponding data in tables. Results can be
saved to file by choosing ‘File|Save results’, and can be saved to the clipboard (and
then pasted into, for example, Excel) by choosing ‘Options|Copy to clipboard’, right
clicking and choosing ‘Copy’, or simply by using the short-cut Ctrl C on the currently
visible table or graph.

Ersatz User Guide 8

Iterations and runs

Ersatz distinguishes ‘iterations’ and ‘runs’. An iteration is a single recalculation of the
Excel spreadsheet, using randomly drawn values from the input distributions. A run
consists of a large number of iterations (typically at least 2000), and Ersatz collects all
outcomes during the run and calculates for each outcome summary statistics such as
mean, standard deviation, and CI. When the ‘Multiple runs’ option is chosen, this
process is repeated as many times as the user specifies. For a detailed discussion of
this option and its uses see the topic on ‘Multiple runs’.

This User Guide

Although in the remainder I will touch briefly upon the concepts of uncertainty
analysis, bootstrapping, and microsimulation, this User Guide is certainly not meant
as an introduction to these issues. The reader is kindly referred to the literature, see
the references for some examples.
The aim of this document is to make the user familiar with Ersatz and its interface,
possibilities, and quirks.

Technical note

Please consult the Technical Appendix below for statistical and other technical
details.

Ersatz User Guide 9

Interface and features

Introduction

In this section I will describe the Ersatz interface, and simultaneously explain the
various features the interface refers to. Controlling Ersatz happens through three
interface elements: the ‘Settings tab’, the ‘Calculation panel’, and the ‘Main menu’. I
will describe these elements in turn.

Settings tab

The Settings tab has two main areas: an Excel and an Ersatz area. In the Excel area
the following check boxes are placed:

1. No screen updates while running. If checked this suppresses the Excel
screen updates after each recalculation. This greatly speeds up the calculation.
Default value is checked.

2. Show mean values while not running. If checked Excel will show the mean
values of the Ersatz distribution functions in the spreadsheet, if unchecked the
functions will return a random value drawn from the distributions (and you
can draw new values manually by letting Excel recalculate the sheet through
pressing F9). Default value is checked.

3. Check for errors while running. If checked Ersatz will for each iteration test
whether the input parameters of the random functions comply with
requirements, if not the function will produce #NUM and a non-fatal error
message will be posted to the Message window. If not checked, this test will
not be performed, and if the parameters are outside the required range it is
unpredictable what the function will return. It is therefore strongly
recommended to have this option on at all times, the performance penalty is
not noticable. Default value is checked.

In the Ersatz area the following items are visible:

1. Confidence intervals (%). You can choose confidence interval values
between 50 and 99%. Default is 95%.

2. Number of decimals in tables. This controls the number of decimals in the
output tables. You can set values from 0 to 10. Default is 3. Please note that
this setting does not affect the number decimals in tables saved or pasted: in
that case a high precision is maintained.

3. Show scattergrams. If checked Ersatz will display scattergrams of inputs and
outputs on the ‘Scattergrams’ tab. Default value is unchecked.

4. Show complete output. If checked Ersatz will display the values of each
output function for each iteration in a table on the ‘Complete output’ tab.
Default value is unchecked.

5. Show sorted output. If checked Ersatz will display all values of each output
function sorted from lowest to highest value in a table on the ‘Sorted output’
tab. Default value is unchecked.

6. Show input. If checked Ersatz will display the values of each input function
for each iteration in a table on the ‘Input’ tab. Default value is unchecked.

7. Show convergence graphs. If checked Ersatz will display the running mean
value of each output function for each iteration ‘Convergence’ tab. Default
value is unchecked.

Ersatz User Guide 10

8. Multiple runs. If checked on the calculation panel an additional box is visible
that allows to set the number of runs. At the same time the options ‘Show
complete output’, ‘Show sorted output’, and ‘Show input’ become
unavailable, while the ‘Multiple run output mode’ checkbox becomes enabled.
The output and input options are disabled because they can easily become very
big indeed with multiple runs. But complete input and output can be saved to
file, and therefore is still available. For a detailed discussion of this option and
its uses see the topic on ‘Multiple runs’. Default value is unchecked.

9. Multiple run output mode. This checkbox is enabled only when the
‘Multiple runs’ box is checked. For a detailed discussion of this option and its
uses see the topic on ‘Multiple runs’. Default value is unchecked.

10. Optimization. If checked, this will open the Optimization tab, which allows
access to Ersatz’s four optimization methods and their options. For a detailed
discussion of optimization, the four methods and their options, see the section
on ‘Optimization’ below. Default value is unchecked.

This concludes the ‘Settings tab’ section.

Calculation panel

The calculation panel is the panel on the left of the main window, displaying the
Ersatz logo. In addition it contains usually two, and occasionally three items,
depending on whether the ‘Multiple runs’ option is chosen.
The calculation panel allows to specify the number of iterations and runs, and to start
the calculation:

1. Calculation. This button starts the calculation, and allows to cancel it when it
has started.

2. Number of iterations. This box allows to specify the number of iterations in
each run. The default value is 1000 (but this is not the recommended value for
uncertainty analysis, see the topic ‘How much is enough?’). The box also
contains an indicator that allows to monitor calculation progress.

3. Number of runs. This box is visible only when the ‘Multiple runs’ option on
the Settings tab is chosen. Otherwise it is analogous to the ‘Number of
iterations’ box, including a progress indicator.

This concludes the ‘Calculation panel’ section.

The Main menu

The Main menu is located just below the title bar of the main Ersatz window. It has
four items (File, Options, View, and Help), each with several sub-items. First the
‘File’ item:

1. File|Connect to Excel. This item is disabled when Ersatz is connected to an
Excel workbook. When the connection is lost, for example because you closed
the workbook, it will become enabled and lets you connect again.

2. File|Disconnect Excel. This item is enabled only when Ersatz is connected to
an Excel workbook. When chosen, Ersatz will disconnect and disable many
options such as the Calculation button.

3. File|Save results. This item is enabled only when results are available after
the calculation. When chosen it opens the ‘Save results’ window, which
allows you to save complete inputs and outputs, and summary outputs, each in

Ersatz User Guide 11

a separate file. Check the items you want to save, specify valid file names (use
the Browse buttons for that), and click the Save button when done.
Note that when multiple runs have been calculated each iteration will be
prefixed with the run number. The file format is comma-delimited (with
extension ‘csv’): this format can be read by Excel and most statistical
packages.

4. File|Exit. This exits Ersatz.

The following sub-items are located in the ‘Options’ item:

1. Options|RNG. RNG stands for ‘random number generator’. Ersatz uses its
own RNGs, and offers the user a choice of 7 different generators, which are
shown in the ‘RNG options’ window. For details, see the topic on Random
numbers.

2. Options|Macros. Ersatz allows to run Excel macros during execution. Please
note that this will, as a rule, considerably slow down the calculation speed.
Choosing this option will open the ‘Macros’ window for the specification of
the macros and further options. See the topic on Macros for details.

3. Options|Miscellaneous. Here you can set various options:
a) The maximum number of times that the ErTruncate function will resample
the embedded random function to obtain a number that falls within the limits.
The default number is 10.
b) Whether or not Ersatz should use short cell addresses in its Sensitivity
graphs. The default is yes.
c) Whether or not Ersatz should use the ErSetItno function. Default is yes.
See the Ersatz Function Overview for details on these functions.

4. Options|Conditional firing. Normally Ersatz functions are triggered on every
iteration. Choosing this option will open the ‘Condional firing’ window, where
you can change the default behaviour by input function. Note that for this
condition to take hold the ‘Conditional firing on’ checkbox has to be checked.
For details, see the topic on Conditional firing.

5. Options|Copy to clipboard. This option is enabled when one of the output or
input grids or graphs is visible. Choosing this option will copy the grid or
graph to the clipboard, from where it can be pasted into other applications,
such as Excel and Word. It is also available by right-clicking the grid or graph.

6. Options|Graph options . This option allows to change the appearance of the
current graph. It is also available by right-clicking the graph.

7. Options|Correlation. Chosing this item will open the ‘Correlation’ window.
See the topic on ‘Correlated random deviates’ for details.

The ‘Sensitivity’ item contains two sub-items:

1. Sensitivity|Univariate. This opens the univariate sensitivity window. Please
note that results from a run will be destroyed by this action.

2. Sensitivity|Multivariate. This opens the multivariate sensitivity window.
Please note that results from a run have to be available for this option to be
enabled.

See the topic on ‘Sensitivity and uncertainty analysis’ for details on these sensitivity
options.

The ‘View’ item contains the following sub-items:

Ersatz User Guide 12

1. View|Distributions. This item opens the Ersatz Distribution viewer, a window
where the user can choose from the list of distributions implemented in Ersatz
functions, get a graphical representation, and change parameters to examine
the effect on the distribution. The window also displays the corresponding
mean and standard deviation.

2. View|Messages. This opens the Messages window, which displays some run
statistics, such as numbers of inputs and outputs, length of calculation time,
etc. It also displays error messages.

The ‘Help’ item has the following sub-items:

1. Help|Ersatz User Guide. Displays this document in a window.
2. Help|Ersatz Function Overview. Displays the Ersatz Function Overview

document, which lists all Ersatz functions and details the parameters.
3. Help|Example spreadsheets. Displays and allows to open the example

spreadsheets that come with the installation.
4. Help|About. Displays the About box, with details of the Ersatz version and

serial number (if applicable).

This concludes the ‘Main menu’ section.

Ersatz User Guide 13

Special topics

Introduction

In this Special Topics section I will briefly touch on some general concepts in the
field of modelling and uncertainty analysis, but focus on the features of Ersatz that
relate to these concepts. Subjects are:

1. Bootstrapping and Monte Carlo Simulation
2. Microsimulation
3. Random numbers
4. Uncertainty and sensitivity
5. Good modelling practice
6. Multiple runs
7. Macros
8. Conditional firing
9. Optimization

The aim of this section is to give some background to the various features of Ersatz,
including references to the literature, and help the user to make full and appropriate
use of these features.

Ersatz User Guide 14

Bootstrapping and Monte Carlo Simulation

Numerical methods

Uncertainty analysis aims to quantify the uncertainty around a central (or point) result
by, for example, giving a confidence interval around that central result. For instance,
an incremental cost-effectiveness ratio (ICER) from an economic evaluation study
might be assessed at $34,000 per quality adjusted life year (QALY), with a 95%
confidence interval (CI95) of $28,000 to $41,500. The CI95 expresses that, given the
data, we expect 95% of all possible outcomes to fall within this range3.
A caveat is due here: with an uncertainty analysis we usually limit ourselves to the
uncertainty due to the sampling error of the input data. Other sources of uncertainty
are explored, if at all, using different methods.
For parametric distributions it can be quite easy to calculate a CI. For example, the
CI95 of a variable with a Normal distribution with parameters μ and σ is given by μ ±
1.96 σ. However, an ICER has several sources of sampling uncertainty: the
uncertainty around the effect size of the intervention, uncertainty around the costs,
and perhaps several more, and it then becomes impossible to find an analytical
expression to calculate a CI.
Enter Monte Carlo simulation and bootstrapping. These methods use numerical (as
opposed to analytical) methods to obtain an estimate of the uncertainty. They rely on
re-sampling to obtain a distribution of outcomes, from which the standard deviation
and a CI are derived. These two main variants of numerical methods are both
supported by Ersatz.

Non-parametric bootstrapping

Non-parametric bootstrapping requires a dataset on the individual record level. From
this dataset a bootstrap replicate of the same size is constructed by randomly drawing
records from the dataset with replacement. This implies that some records will be
present more than once, while others will not be present at all. From this bootstrap
replicate the outcome of interest is calculated. This procedure is repeated many times,
resulting in a distribution of outcomes.
Non-parametric bootstrapping has the big advantage that no assumptions on the
distribution of the data have to be made. This makes it particularly useful when such
assumptions become rather heroic. For large datasets the central limit theorem assures
that the assumption of normally distributed statistics like the mean is close enough,
but for small datasets this assumption often stretches credibility.
Ersatz has implemented non-parametric bootstrapping through the ErNonparam and
ErNonparamCom functions, see the Ersatz Function Overview document for details.

Monte Carlo Simulation

Monte Carlo simulation (sometimes also called ‘parametric bootstrapping’) does not
require individual record level data, but it does require you to make assumptions on
the distributions of the variables in the model. Once all appropriate variables have
been replaced by suitable distribution functions (including suitable parameters), the

3 I know, from a frequentist’s point of view this is not correct. However, uncertainty analysis is in
many respects closer to the Bayesian approach to uncertainty, and within the Bayesian framework it is
a valid statement.

Ersatz User Guide 15

model is re-calculated many times, each time drawing a random value from each of
the distribution functions, again resulting in a distribution of outcomes.
The main issue with Monte Carlo Simulation is the choice of suitable distributions
and parameters. Sometimes the choice is obvious (e.g. average height from a large
population survey has a Normal distribution), sometimes almost by definition (e.g.
Binomial and Multinomial and their conjugate Beta and Dirichlet distributions for
categorical variables), but inevitably sometimes a rather subjective choice must be
made. For a discussion on the choice of distributions and the estimation of parameters
in the context of health economic evaluation, see the section on Good Modelling
Practice below, and the book by Briggs et al (Briggs, Sculpher et al. 2006).
Ersatz has a whole range of distributions for Monte Carlo Simulation, see the Ersatz

Function Overview document for the list of functions.

Combined parametric and non-parametric models

Ersatz allows mixed models, with some parameters described by parametric
distribution functions, while others get their value from a non-parametric bootstrap.

How much is enough?

How many iterations should you use? A good question, and the answer is ‘it depends’.
It depends on your model, the outcome statistic you are interested in, and on your own
preferences. Generally speaking, the number of iterations is enough when repeated
runs of your model with that particular number of iterations generate results that are
sufficiently similar.
Note the subjectivity in ‘sufficiently similar’. When you are interested in central
statistics such as the mean, you can for most models get away with less than 1000
iterations. However, when you are interested in confidence intervals, you will
generally need more than that, because confidence intervals are derived from the
infrequent samples from the extremes of the distributions.
Ersatz offers a convergence graph to let you inspect the stability of the outcome
variables. This graph shows the running mean by iteration. Typically at the lower end
of the number of iterations this running mean shows large volatility, that decreases
towards the higher iterations end of the graph. Your model outcomes have converged
on their mean value when the right part of the convergence graph is virtually a
straight horizontal line.
As a general rule I recommend not to skimp on the number of iterations. Of course
calculation time can become an issue, but for most models on today’s PCs the issue is
minor.

Ersatz User Guide 16

Microsimulation

Introduction

In the discussion of bootstrapping above it was implicitly assumed that the model
describes a population. Parameters, such as the risk of disease, are assumed to be
equally applicable to all members of the population. When this assumption is
obviously not met, the standard response is to subdivide the population, for example
by age and sex, such that within the subpopulations the assumption of homogeneity is
reasonable.
Subdividing the population to accommodate heterogeneity works, up to a point. It
may be self-defeating when the number of subdivisions is so large that the model
becomes unwieldy. This can easily happen with models describing various risk factors
with several levels of exposure and time-dependent risks, for instance.
Another example of an area of research where subdividing the population is only a
partial solution is that of cancer screening models, where much of the evaluation of a
screening program is determined by the degree of heterogeneity that the model
allows. In such cases, microsimulation may be the best option.

Individual level models

Microsimulation is a technique where the unit of simulation is the individual. The
model describes an individual life history using probabilistic functions. An instance of
a life history is created by drawing randomly from these distributions. Population
level outcomes are obtained by creating many of these life histories, and deriving the
desired outcomes, such as disease prevalence, from the individual level simulated
data.
It will be clear that accommodating heterogeneity should be no problem in such
individual level modelling. What may not be obvious is that microsimulation usually
is very computationally intensive. To obtain reasonably stable population level
outputs often a very large number of individual life histories needs to be created. In
addition, microsimulation is generally more demanding in data requirements: to
model heterogeneity requires data on heterogeneity. These drawbacks make
microsimulation an option that needs careful consideration.

Microsimulation and Excel

Given the tendency of microsimulation to be computationally intensive, Excel is
hardly the ideal environment for this technique. Microsimulation models are often
written in general purpose compiled programming languages, such as Object Pascal
and C++, that produce optimised executables. However, programming in such
languages requires special tools, specific expertise, and usually a large effort.
Therefore microsimulation in Excel may be an attractive alternative.
When you go down that road, model efficiency should be foremost in your mind. A
well designed model may run several times faster than a poorly designed one, and that
becomes important when run times are counted in hours rather than seconds.
An example will illustrate this. One of the returning issues in disease modelling is to
assess an age at death, given age-specific conditional mortality probabilities such as
routinely published by national statistical bureaus. In a discrete single-year time/age
approach this can be done by drawing for each age a uniformly distributed number
between 0 and 1, and assess whether it is smaller than or equal to the mortality
probability of that age. The youngest age for which this is true then becomes the age

Ersatz User Guide 17

at death. If your model considers ages from 0-100, this requires 101 random draws
and comparisons (see example workbook ‘survival123’, spreadsheet ‘survival1’).
While this works, it is not efficient. An about twice as fast way of obtaining the same
result requires the mortality probabilities to be converted to a survival curve, and then
use a single random uniformly distributed number between 0 and 1 together with the
Excel INDEX and MATCH functions to look up this value in the survival curve (see
example workbook ‘survival123’, spreadsheet ‘survival2’). The same technique can
be used to determine age at disease incidence and other empirical data driven time-to-
state-transition model variables.

Microsimulation and Ersatz

Using survival curves improves performance, but the implementation in ‘survival2’ is
still not ideal. The main problem is that time is treated as a discrete variable, which of
course it is not. In ‘survival2’ (as in ‘survival1’) it is assumed that death occurs half
way through the age interval (the ‘0.5’ in the formulas), which is reasonable enough
on the population, but less so on the individual level. Moreover, it is not clear what to
do when more than one cause of death can occur in the age interval (say, a disease
specific and an ‘all other’ causes death). This so-called ‘competing risks’ problem is
introduced by treating time/age as a discrete variable.
A better design choice is therefore to use a continuous time, discrete event approach
instead of the perhaps more intuitive discrete time one. Briefly, in continuous time,
discrete event modelling everything that happens is called an ‘event’, and each event
has an exact time linked to it. The model proceeds from one event to the next (see for
example (Law and Kelton 2000) for an introduction to discrete event modelling). This
is elegant because it solves the competing risks problem and is efficient at the same
time.
Ersatz has of course the continuous parametric distributions that are well suited to this
kind of modelling, but it also implements a continuous empirical survival function,
ErSurvival. This function takes conditional failure probabilities by discrete time as
parameters, and returns a continuous survival time (see the Ersatz Function Overview
for details). ErSurvival also takes a parameter that allows it to return survival time,
conditional on having survived so far. The ‘survival3’ sheet in workbook
‘survival123’ has an implementation of ErSurvival that is equivalent to the survival1
& 2 worksheets, but then in continuous time.
Other Ersatz features that come in handy for microsimulation are ‘Multiple runs’ and
the ErRunOutput, ErIteration, and ErConditional functions. When doing population
level modelling an iteration stands for a recalculation of the entire population, given a
random draw from uncertain parameters such as effect size. A ‘run’ consists of a
large, say 2000, number of iterations, with the effect of uncertainty in the parameters
reflected in the distribution of outcomes.
When doing individual level modelling (microsimulation) an iteration stands for an
individual, and a ‘run’ is the equivalent of doing a single iteration in a population
level model. Consequently, to do an assessment equivalent to a population level
analysis with 2000 iterations, in microsimulation you will have to do 2000 runs with
each a number of iterations equal to the population size you deem proper (here is
where microsimulation truly becomes computationally intensive).
And with a microsimulation run equivalent to a population level iteration, it is also
clear that you want a single draw from uncertain parameters such as effect size to
apply all individuals in your population (= a microsimulation run). In other words, in

Ersatz User Guide 18

microsimulation you have to do uncertainty analysis by doing multiple runs, with
some individual level functions (such as ErSurvival) drawing a random value at each
iteration, while population level functions (such as ErRelativeRisk for effect size)
draw a random value only once for each run.
Ersatz offers the tools to implement this. See the topic on Useful functions for

multiple runs in the section on Multiple runs below and the Ersatz Function Overview
for details.

Combating randomness in microsimulation

Health economic evaluation is all about comparing a specific intervention with a
comparator that is in all respects the same except for that intervention. As such it is
using the same design as a randomised controlled trial (RCT), the only difference
being that in addition to measuring the health outcomes in each arm it is also
measuring the costs.
In an RCT an important issue is to make the subjects in the intervention and control
arms as comparable as possible. To that end a study population is selected that is
similar in all attributes that can be measured, and randomisation is used to control for
chance (or, equivalently, for attributes that cannot be measured). Ideally you would
like to have each subject to act as its own control, but apart from the limited
applicability of cross-over designs this ideal cannot be reached in practice (and even
then!).
A microsimulation model mimicking an RCT that compares disease survival with and
without some drug, for example, would simulate life histories in both arms by
randomly drawing ages at incidence, deaths from all other causes, and disease
survival. The difference between the arms would originate from drug induced
systematic differences in the survival, and all chance differences due to the random
draws.
We are, however, trying to evaluate the drug induced systematic difference only, all
the other random differences are just muddling the picture (or, to put it more
precisely, increasing variance).
While this is inevitable in RCTs, it is avoidable in microsimulation modelling. In
microsimulation it is possible to make life histories the same between arms in every
respect except the survival. A single draw determines age at incidence, and another
single draw age at death from all other causes in both arms. To avoid random
difference in the survival Ersatz implements a variant of the ErSurvival function
(called ErSurvival2) that takes as an additional parameter a uniformly distributed
number between 0 and 1. This allows to apply the same random draw to two different
survival functions.
Such a set up makes, at least in the microsimulation model, subjects act as their own
controls, thereby greatly reducing variance (and increasing precision). In the example
workbook BreastCa the two cases are compared. This workbook implements the

survival effect of trastuzumab (Herceptin) for her2-positive women as compared to
standard therapy survival.
In worksheet Breastca1 the two arms have independently drawn ages at incidence, all
other causes death, and survival after breast cancer incidence. In the BreastCa2
worksheet the two arms are identical in all these respects except for the survival effect
of tratuzumab. The standard deviation of the survival difference is reduced from about
13.5 to 1, the 95% uncertainty interval from about –26..+30 to 0..3. A huge reduction
in uncertainty.

Ersatz User Guide 19

Microsimulation is a very powerful technique but is has clear drawbacks as well, and
the inherent (so-called “first order”) randomness is one of them. Clever design,
however, can greatly reduce this first order randomness. An additional technique to
reduce it, so-called “common random numbers” is discussed in the next section on
random numbers.

Ersatz User Guide 20

Random numbers

Introduction

Bootstrapping and microsimulation depend on random numbers: the model uses
distributions to describe crucial variables, and a particular outcome is calculated using
specific values for these variables that are drawn randomly from the distributions.
This implies, by the way, that the outcome of the model is a random variable as well.
While this is the purpose of an uncertainty analysis, because it allows you to quantify
the uncertainty of that outcome, it can also be a real nuisance.
When, for example, you assess the health and cost outcomes of a particular medical
intervention by comparing model outcomes with and without the intervention, you
don’t want this comparison to be confounded by the randomness of that outcome. And
fitting a random model to observations can be a pain too.
The usual response to combat the randomness of the model outcome is to increase the
number of iterations, but this has of course the drawback of increasing calculation
time. Another response is to use ‘common random numbers’, see the section on this
topic below.
Computer programs can produce random numbers using algorithms called ‘random
number generators’ (RNGs), and Ersatz offers the choice of seven different ones.

Random number generators

An ‘algorithm that produces random numbers’ is of course an oxymoron: a
deterministic process (an algorithm) cannot produce random numbers. The outcome
of a RNG is therefore more correctly described as ‘pseudo random numbers’:
something that looks like random numbers, but isn’t. An important property of a RNG
is how well the pseudo random numbers resemble the real thing.
The basic operation of a RNG is as follows. Each RNG produces a large but fixed
number of fixed ‘random’ numbers in a fixed sequence. The large number is called
‘the cycle length’ or ‘period’. A ‘seed number’ is used to determine where in this
cycle the RNG will start to generate a stream of ‘random’ numbers. When the
requested number of ‘random’ numbers is larger than the cycle length the RNG
simply restarts at its entry point.
From this discussion it will be clear that a RNG produces anything but random
numbers. It will also be clear that the cycle length is an important property of a RNG:
longer cycle lengths are preferred.
So there are two main characteristics that determine the quality of a RNG: its
statistical properties (how well do the numbers resemble random numbers) and its
cycle length. High quality RNGs have good statistical properties and a long cycle.
Unfortunately, there is a trade-off: high quality RNGs require as a rule more
computational effort than low quality ones. The build-in RNG of Excel (accessible
through the RAND() function) prior to version 2003 was not very good; with version
2003 and later a better algorithm (based on Wichman & Hill) has been implemented.
Ersatz uses its own RNGs and therefore can offer the user a choice how to trade off
speed against quality.

The Ersatz RNGs

Ersatz has seven build-in RNGs, mostly based on the Ultimate Random Number Suite
as programmed by Peter N Roth and Stefan Hoffmeister (and the following text is

Ersatz User Guide 21

partly based on their release notes). The RNGs are, by and large in order of increasing
quality:

1. Quick and dirty
2. Park & Miller minimal standard congruential generator
3. Park & Miller with a Bays & Durham shuffle
4. L’Ecuyer’s two-series combo plus a shuffle
5. Mersenne twister
6. Fast Marsaglia
7. Top-quality Marsaglia

The RNGs number 1-4 are from Numerical Recipes (Press, Teukolsky et al.). The
Mersenne twister is based on the algorithm developed by Makoto Matsumoto and
Takuji Nishimura (see http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html)
and has excellent statistical properties. The Marsaglia generators (6 & 7) provide an
extremely long cycle (more than 1.0e356) and also have excellent statistical properties
(Marsaglia and Zaman).
The default RNG in Ersatz is the Fast Marsaglia. For many applications this is an
excellent choice, if probably quality overkill. On the other hand, in my experience
there is very little speed advantage to be had from moving to a lower quality, but
faster RNG: the computational bottlenecks are more likely to be in Excel than Ersatz.
But the user may want to experiment.

Random deviates

RNGs produce uniformly distributed random numbers between 0 and 1 (an art that, as
the reader will have deduced by now, comprises a whole research field of its own).
The only Ersatz function that reproduces the output of the RNG directly is
ErUniform01(), the function that returns a uniformly distributed random number
between 0 and 1. Other Ersatz distribution functions return random deviates from
other distributions, such as Normal, Gamma, etc. How are these obtained?
Getting random deviates from a specific distribution, given a random number between
0 and 1, can be very simple indeed. All that is needed is the inverse of the cumulative
distribution function (CDF).
The CDF(x) is the integral (continuous distributions) or the sum (discrete
distributions) of the density function from the lowest value of the range the function is
defined for to x. While the density function returns the probability mass at a specific
point x, the CDF(x) returns the probability mass from the lowest defined value up to
and including x. The CDF is therefore a non-decreasing function between 0 and 1.
The figure shows a Weibull(1.8,2.5) density function, and the corresponding CDF.
For each value on the x-axis you can read from the y-axis how much probability mass
is lying to the left of it.

Ersatz User Guide 22

The inverse of the CDF does something similar but the other way around: pick a value
from the y-axis, and read off the corresponding value of the x-axis. If you pick a
random value between 0 and 1 from the y-axis, you can thus read off a randomly
chosen value from the Weibull(1.8,2.5) distribution. The CDF of the Weibull
distribution is:

()





















−−=

β

α

x
xF exp1

The inverse of this function can be written as:

() ()()βα
1

1 1ln xxF −−=−

To generate randomly drawn numbers from the Weibull(1.8,2.5) distribution in Excel
you type into a cell “=1.8*(-LN(RAND())^(1/2.5))” (1-x is equivalent to x when x is a
uniformly distributed random number between 0 and 1), and recalculate (press F9).
Too easy. The problem is, however, that for only very few distributions, such as the
Weibull and the Exponential, an analytical expression for the inverse CDF exists
(none exists for the Normal, for example). So how does Ersatz (and other software)
obtain random deviates from distributions without known inverse CDFs?
As with the generation of uniformly distributed random numbers between 0 and 1,
this comprises a whole field of research in its own. A range of algorithms, often very
ingenious but hardly intuitive, has been developed. Some examples (with code)
appear in Numerical Recipes (Press, Teukolsky et al.), Law and Kelton have a more
elaborate selection (with pseudo code) (Law and Kelton 2000), but the canonical book

Weibull(1.8,2.5)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

X-axis

Y
-a

x
is

Density

Cumulative density

Ersatz User Guide 23

in this area (also with pseudo code) is Non-Uniform Random Variate Generation by
Luc Devroye4 (Devroye). Few people will ever be in the situation to need a
comprehensive overview of algorithms to generate random deviates, but if you
happen to be one of those, this book is strongly recommended.

Common random numbers

As mentioned in the introduction of this section, one of the problems of random
numbers is that they are, well, random. This makes the outcome of the model random
as well, and makes it impossible to assess whether outcome differences are due to real
differences or to randomness. In addition, it confuses optimization routines used to fit
the model to observed data. Under these circumstances you would like to have the
same random numbers over and over again, a randomness reduction technique that
goes by the name of ‘common random numbers’.
From the discussion above on RNGs, you can conclude that by providing the same
seed number to the RNG, you get the same stream of quasi random numbers each
time. And indeed, that is a solution many programs use to produce common random
numbers. However, in combination with Excel this technique is highly unreliable.
Excel determines the order in which the functions in your workbook are evaluated,
and this order may change with even minor changes to the workbook. So if you have
more than one Ersatz function in your workbook, the fixed stream of random numbers
may end up in a different order at the Ersatz functions, thereby breaking common
random numbers. It is for this reason that Ersatz does not offer the option to set the
seed number of the RNG.
You can achieve common random numbers in Ersatz/Excel by creating streams of
random numbers for each of your input variables, save these to Excel, and reuse them
as many times you want. This is the way to do this:

1. Run your model with Ersatz set to as many iterations as you will need.
2. When Ersatz in done, check the ‘Show input’ box, and click the input tab. This

will show a table with your input variables and the values generated for each
iteration.

3. Copy this table (Ctrl-C), and paste it into Excel.
4. Replace your input Ersatz functions with ‘ErFixed(range,ErIteration())’, where

‘range’ is the Excel range which contains the random numbers of the
corresponding input variable. For details on the ErFixed and ErIteration
functions, see the Ersatz Function Overview document.

Note that if you have more than 1 input variable, as is likely, it is a good idea to have
a single ErIteration function in your spreadsheet, with all the ErFixed functions linked
to it (see the Common random numbers example spreadsheet). Also note that it is a
good idea to have several instances of streams of common random numbers and to
change around the one in use once in a while: avoid relying on a single one on the off-
chance that it produces a very exceptional result.

4 This book from 1986 has been out of print for a long time, with the publisher refusing to re-print. This
has enraged the author such that he had the whole book scanned and put up his website, where it is
available for free (http://cg.scs.carleton.ca/~luc/rnbookindex.html). It’s a big download, but worth
every bit of it.

Ersatz User Guide 24

Correlated random deviates

It may be that your model needs random draws from different distribution functions to
be correlated. For example, you may want the prevalence of diabetes in the model
population to be positively correlated with the randomly drawn average body mass
index (BMI).
The best described method to obtain correlated random deviates is for the Normal
distribution. This method uses the covariance matrix of N Normally distributed
variables, such as you would obtain from a statistical package. The so-called
Cholesky decomposition of this matrix provides factors that allow to obtain randomly
drawn numbers from those N Normal distributions with the required correlation
structure (see (Briggs, Sculpher et al. 2006) for an example for N=2). This method is
implemented in the Ersatz ErCorrNormal and ErCorrNormalCom functions, see the
Ersatz Function Overview document for details.
For other than Normal distributions the picture is less clear. There are a number of
analytical approaches for bivariate distributions (such as the Gamma), but very little
for more than two, and I am not aware of any analytical solutions for correlated
random draws from different distributions.
To provide correlated random draws from N arbitrary distributions Ersatz therefore
implements a rank correlation solution. The algorithm is as follows:

1. Starting point is a user provided correlation matrix.
2. Using the Cholesky decomposition, N correlated N(0,1) random deviates are

drawn for each iteration, and subsequently ranked.
3. For each of the N arbitrary distributions random deviates are drawn for each

iteration, and subsequently sorted.
4. At each iteration the rank numbers of the correlated Normals are used to

obtain the correspondingly ranked random deviate from the arbitrary
distributions.

This method is implemented in the Ersatz ErRankCorr and ErRankCorrCom
functions, see the Ersatz Function Overview document for details. The nature of the
algorithm requires all the activity to be performed at the start of the run, at each
iteration the ErRankCorrCom functions simply provide a number from the pre-
calculated list.
While rank correlation is not the same as Pearson product moment correlation, in
many cases the results are pretty close, see the RankCorr example spreadsheet for an
example of rank correlated draws from a Gamma, a Weibull, and a Poisson
distribution.

Correlated multinomial and Dirichlet distributions

The rank correlation algorithm described in the previous section work for univariate
distributions only. But, as has happened with several other functions available in
Ersatz, I needed correlated multivariate, in particular Dirichlet, distributions for my
own research, so there.
The area of correlated multinomial and Dirichlet distributions seems an untrodden
field: I’m not aware of any previous work. First I will define what exactly is meant
here by correlated random draws from these multivariate distributions. It is defined
here as a number of multivariate distributions of equal dimensionality, with all
dimensions having the same correlation between distributions. So there is just a single
correlation matrix, and each category has the correlation specified in the matrix with
its corresponding category in the other distributions.

Ersatz User Guide 25

In the remainder of this section, I will discuss the algorithm for the Dirichlet
distribution only, but the same algorithm is used for the closely related multinomial
distribution. The algorithm is based on rank correlation.
The challenge is that a Dirichlet distribution has the properties that the sum over the
categories always equals 1, and that the categories have a negative covariance. Of
course, neither of these properties should be compromised by the imposition of a
correlation structure with other Dirichlet distributions.
The algorithm to generate Dirichlet distributed random numbers, based on (Devroye
1986), uses for each category a random draw from a Gamma distribution with the
category parameter as the first parameter for the Gamma and 1 as the second. The
outcomes are summed over the categories, and each category outcome is then divided
by the sum to obtain the desired proportions for the Dirichlet.
Given that the draws from the Gamma distribution are independent, this leads to the
following rank correlation algorithm to obtain correlated Dirichlet distributions:

1. For each category of the Dirichlet distributions for each iteration draw
correlated random numbers from a standard Normal distribution using the
Cholesky decomposition of the correlation matrix.

2. Rank the numbers for each category.
3. Draw numbers for each category and iteration from the Gamma distribution,

and sort for each category.
4. For each category and iteration, use the ranks of the correlated Normals to

obtain numbers from the Gamma outcomes.
5. For each iteration, sum over the categories and divide each category number

by the sum.
Again, rank correlation is not the same as linear correlation, and in the case of
correlated Dirichlet distributions the achieved linear correlation tends to be a bit
closer to zero than the one specified in the correlation matrix.
The algorithm for the stand-alone multinomial distribution in Ersatz is based for each
category on a draw from a binomial distribution, conditional on the draws from
previous categories (Devroye). This makes it incompatible with a rank correlation
algorithm as described above. The correlated multinomial function is therefore based
on the Dirichlet algorithm, with the outcomes obtained by a rounded multiplication of
the Dirichlet proportion with the sum over the category numbers, except for the last
category which is assigned the remaining number. This gives a very close
approximation of the conditional binomial approach.
See the Ersatz Function Overview document for details on the implementation of
these functions.

Valid correlation matrix

A correlation (or covariance) matrix for 3 or more distributions can be invalid, or, to
put it mathematically, a correlation matrix needs to be positive (semi) definite to be
valid. This means that no eigenvalue must be negative and at least one positive. When
a covariance matrix is obtained from a statistical package, this requirement will be
satisfied (but beware of rounding error!), but when assembling a correlation matrix of
3 or more distributions from pairwise observations, it is easily violated. Ersatz checks
the provided correlation matrix, and it is a fatal error when it is invalid.
Ersatz therefore offers the option to check your correlation or covariance matrix for
validity. Choose ‘Options|Correlation’, paste your matrix into the grid (it will

Ersatz User Guide 26

automatically resize to fit), and click the ‘Check’ button. If ‘Matrix valid’ appears,
you’re on your way.
If the matrix proves to be invalid, Ersatz can suggest an alternative but valid matrix,
as close as possible to the original one. Ersatz calculates a valid correlation matrix by
shifting the original correlation matrix by its lowest eigenvalue. If you provided a
covariance matrix, this valid correlation matrix is used to calculate a valid covariance
matrix.

Ersatz User Guide 27

Sensitivity and uncertainty analysis

Introduction

Uncertainty and sensitivity analysis mean different things to different people. In this
section I will describe my understanding of uncertainty and sensitivity analysis, and
how Ersatz can deal with them.
There are several kinds of uncertainty in a health economic evaluation, Briggs et al
for example distinguish four, among them uncertainty relating to analytical methods
and extrapolation (Briggs, Sculpher et al. 1994). The present discussion is limited,
however, to outcome uncertainty as a consequence of uncertainty in the values of the
input parameters of the model. This limitation therefore excludes, for example, the so-
called ‘structural uncertainty’ that follows from the fact that there is more than one
way to model a certain health intervention (actually, an unlimited number of ways).

Sensitivity analysis

Sensitivity analysis I define as the quantification of the effect of variation in specific
input parameters on the outcome. The function of sensitivity analysis is to show
which variables have the largest impact on the outcome. For the researcher this has
the specific benefit of pointing out which input variables need to be estimated with
high precision in order to reduce the uncertainty in the outcome. Ersatz implements
two types of sensitivity analysis.

Univariate deterministic sensitivity analysis
 In this type of sensitivity analysis the values of the input parameters are varied one by
one, and for each variation the output variables are calculated. The variation in the
input can be either plus and minus one standard deviation, or plus and minus 10% of
the mean input value. Output is as tornado graphs and a table.

Multivariate probabilistic sensitivity analysis
This type of sensitivity analysis builds on the results of an uncertainty analysis, and
therefore requires that first an uncertainty analysis is run (see below). Given all the
values of all the input and output variables, the probabilistic senstivity analysis then
calculates the correlation coefficients between each input and output pair of variables.
Ersatz implements a number of methods to calculate these correlation coefficients (for
details on these methods, see for example (Conover 1999)):

1. Pearson's Product Moment Correlation Coefficient.
This method assumes that there are no correlations between the input variables
and that there exists a linear correlation between the input and output variable
pair. In particular the linearity assumption will often be violated, so this might
not be a good choice.

2. Spearman's Rank Correlation Coefficient.
Unlike Pearson’s PMCC this method does not assume linear correlations,
however it does assume that there are no correlations between the input
variables.

3. Kendall's tau.
Kendall's tau uses a different method, but is for all practical purposes
equivalent to Spearman’s RCC.

Ersatz User Guide 28

4. Spearman's input-input Rank Correlation Coefficient.
This option allows to investigate whether there are correlations between the
input variables. Note that the scattergrams allow a visual inspection of
correlations between model variables.

5. Partial Rank Correlation Coefficient.
The Partial RCC is provided in case the input variables are correlated. It is,
however, a rather computationally involved method, in particular when the
number of variables is large.

When offered several options, the question becomes which to use. The default method
is Spearman’s RCC, and this method is usually adequate. Depending on taste the user
might prefer Kendall’s tau. But in both cases it is wise to check the input variables for
strong correlations, and if they exist to use the Partial RCC instead.

Uncertainty analysis

Uncertainty analysis I define as the quantification of the simultaneous and combined
effect of the uncertainty in the input variables on the outcome of interest. Rather
implicitly the uncertainty in the input variables that is meant here is uncertainty due to
sampling error. For the uncertainty analysis we replace in our model fixed parameter
values by distributions5 with a mean and standard deviation, and repeatedly
recalculate the model with values sampled from those distributions. This makes sense
only for parameters that can be meaningfully described by a distribution, and these are
in practice parameters that have been (or could have been) estimated from sample
data.
Not all inputs with uncertain values confirm to this criterion. A classical example in
health economic evaluation is the uncertainty of the discount rate, the degree of time
preference included in the analysis. Health economists have endlessly debated what
the discount rate should be, but no consensus has been reached. So while the value of
the discount rate is definitely uncertain, it is not uncertainty due to sampling error. Its
effect is therefore best explored by univariate sensitivity analysis: simply recalculate
the model outcome using a range of values for the discount rate.

Conclusion

So what should you do, sensitivity or uncertainty analysis? The answer is an
emphatically “Both!”. Sensitivity and uncertainty analysis both examine the
uncertainty in the outcome of your analysis, but they answer to different questions.
Moreover, they give only partial answers: only uncertainty due to uncertain values for
input parameters is explored. Methods to include quantified uncertainty due to other
sources, such as model structure, are currently not available, and may very well never
become so.

5 For guidance on which distributions to use, see the section on Good Modelling Practice below.

Ersatz User Guide 29

Good modelling practice

Introduction

Good modelling practice (GMP) is not something that is set in stone, but rather a
collection of rules and norms that, when followed, will make your model qualify.
Some of these rules are hard ones, but most are not, and in the end there is also an
aesthetic dimension. This section is not meant as a general introduction to GMP. It
will touch only briefly on most aspects, and then concentrate on an aspect very
pertinent to modelling with Ersatz: the choice of appropriate distribution functions for
given model variables.

Rules and norms

Formal validity
An important rule, and the only really hard one, is that of formal validity: the model
should calculate what it is supposed to do. In other words, no bugs.
As such this seems obvious, in practice it is not. The power of Excel as a modelling
environment is its flexibility, but this is its main weakness as well. Because anything
goes, it is quite easy to make a royal mess. It requires serious self-discipline to avoid
this. In addition to self-discipline, techniques such as stress-testing (putting variables
to their extreme values) and check-sums (making sure all items in your model are
accounted for: none are generated or disappear miraculously) are recommended.

Simplicity
Given the research question, a model should always be the simplest one that can
anwer it. This rule is basically the application of Ockham’s razor to modelling, and
therefore goes a long way back. It is an important principle, and a pre-requisite for the
next rule.

Transparency
‘Lack of transparency’ is probably the most used argument to challenge results from a
modelling exercise. While this argument may sometimes be borne out of laziness or
even bad faith, it is all too often justified. You cannot expect people to believe your
model’s results while the model itself is a black box to them. Your duty as a modeller
is to reveal how your model works, and to explain the results, all in a language that is
understandable to people not familiar with modelling, but likely to be experts in the
field your model pertains to. If you fail to convince them, your work will have been in
vain (even if you were right).

Elegance
This is probably the hardest criterion of all to define. However, when a model is valid,
simple, and transparent, it already comes a long way to being elegant as well. But
elegance requires something extra, a semblance of effortlessness. Good writers
achieve elegant prose by developing a clear structure to their argument, and then by
putting the right words in the right places (needless to say this requires hard work: the
effortlessness is a semblance, and the benefit is to the reader).
In much the same way elegance of a model rests on a clear structure (simplicity and
transparency), and of the choice of the right distributions in the right places. Choosing
the right distributions is the subject of the next section.

Ersatz User Guide 30

Choosing appropriate distributions

Introduction
When replacing a model variable by a distribution function and its parameters, the
modeller in many cases has to rely on the reported standard deviation or confidence
intervals of that particular variable. The confidence intervals are typically calculated
using the assumption of a Normal distribution, even when this leads to impossible
results. For example, the lower limit of a confidence interval of a proportion may end
up in negative territory, or the upper limit is greater than one, by definition impossible
values.
When reporting confidence intervals no real harm is done, it only looks a bit
awkward. However, when randomly sampling from such a Normal distribution, and
recalculating the model with an impossible value, the results are not just awkward, but
are actually invalid.
A ‘solution’ is then to truncate the Normal at 0 and 1. However, this is a bad solution,
for three reasons. It is ugly, because it causes discontinuities at 0 and 1. It is invalid in
the sense that the resulting distribution will not have the intended mean and standard
deviation. And it is bad modelling practice, because a perfectly good solution exists.
When a randomly drawn value is to be constrained between 0 and 1, the natural
candidate distribution is the Beta, a distribution that under no circumstances will
produce values outside the 0..1 range. The Beta distribution has two parameters, by

convention called α1 and α2. To calculate the parameters of the Beta distribution that
has the reported mean and standard deviation, you set the equations for the mean and

standard deviation of the Beta equal to µ and σ, the mean and standard deviation of
the Normal:

21

1

αα

α
µ

+
=

() ()12121

21
2

+++
=

αααα

αα
σ

Re-arranging these equations gives the values of α1 and α2 as functions of µ and σ:

()
2

22

1
σ

σµµµ
α

−−
=

()
µ

µα
α

−
=

11
2

The resulting Beta distribution has the intended mean and standard deviation, shows
no discontinuities, and stays within the 0..1 range by definition.
When no standard deviation is reported, but a confidence interval is, it is easy to
calculate the standard deviation s from the confidence interval:

z

LH
s CICI

2

−
=

Ersatz User Guide 31

with HCI and LCI the upper and lower limit of the confidence interval respectively, and
z the factor from the standard Normal that applies to the confidence interval (e.g 1.96
for the 95% confidence interval).
To summarise, the resampling technique used in uncertainty analysis requires to make
sure that sampling from the distributions used never produces values that are outside
the valid range of that variable. You can achieve that by using the ErTruncate
function, but it is much more elegant to use distributions that will by definition not
produce values that should not occur. A number of suggestions are in the remainder of
this section.

Prevalence and probability: the 0..1 range
With a two category prevalence (e.g. diseased and non-diseased) the Binomial
distribution is, almost by definition, the correct choice. In that case the Binomial is
defined as the number of diseased in a population of size N. When you want to
describe the prevalence as a proportion, you can use a random draw from the
Binomial, divided by its N parameter. The resulting number will never get outside the
0..1 range.
The next step is to get the correct parameters. The Binomial has two parameters: N
and p. The p parameter is simply the observed prevalence (expressed as a proportion).
The standard deviation s is:

 ()pNps −= 1 ,

again divided by N when expressed as a proportion. Given a standard deviation of the
prevalence s you can therefore calculate the N that goes with the p and the standard
deviation by:

()

2

1

p

ss
N

−
= .

However, the Binomial is a discrete distribution. When N is big, the resulting
prevalence random draws will be nearly continuous, but for small N this may not be
the case. To avoid the discontinuities that follow from the discrete nature of the
Binomial, you can use the Beta distribution as an approximation. The Beta is, in
Bayesian circles, often referred to as a ‘conjugate’ distribution of the Binomial
(Gelman, Carlin et al.). The parameters of the Beta that approximates the Binomial
(with parameters N and p) are

α1=Np, and

α2=N(1-p).

Because prevalence proportions and probabilities share the same range of 0..1 values,
the discussion above applies equally to transition probabilities in your model.

Multiple categories prevalence and transition probabilities
The discussion above is pertinent to two category prevalence, but there exist
generalisations to multiple categories. The Multinomial distribution is the

Ersatz User Guide 32

generalisation of the Binomial, and the Dirichlet distribution the generalisation of the
Beta. Both are implemented in Ersatz as ‘component’ random functions, see the
Ersatz Function Overview for details.

Two-sided arbitrary limits
What if you need two-sided limits on the values from a random function other than 0
and 1? Again the Beta distribution is useful here. If you need random draws from a
distribution f between the values min and max, you can use

() () ()2,1Betaminmaxminmaxmin,2,1 αααα −+=f

The mean of this function will be:

 () ()
21

1
minmaxminminmaxmin

αα

α
β

+
−+=−+= mm ,

and the standard deviation:

 () ()
() ()12121

21
minmaxminmax

2
+++

−=−=
αααα

αα
βss .

In other words, you can simply shift and scale the distribution because the mean and
standard deviation are measured in the same units. For the same reason, the derivation
of the parameters of the Beta is straightforward: calculate the mean and standard
deviation of the Beta as

minmax

min

−

−
=

m
mβ , and

minmax−
=

s
sβ ,

and then use the equations

()
2

22

1

β

ββββ
α

s

smmm −−
= , and

()
β

βα
α

m

m−
=

11

2

from above to calculate the parameters of the Beta. The equations above are useful to
calculate the parameters of the ErBeta4 function, which implements a rescaled Beta
function along the lines described here.

Ersatz User Guide 33

One-sided limits

One-sided limits are best modelled using one of the distributions that have a 0..∞
range: Lognormal, Gamma, Weibull, and Exponential for continuous distributions,
and Binomial, Geometric, Negative Binomial, and Poisson for discrete distributions.
To obtain random numbers with a lower limit A simply use A+dist, where dist stands
for one of the continuous or discrete functions mentioned above. Similarly, for
random numbers with a upper limit A use A-dist.

Relative risk
For the relative risk (RR) the standard assumption is that ln(RR) has a Normal
distribution with parameters ln(RR) and its standard error SE[ln(RR)]. More formally:

() ()[]()()RRSERRNRR ln,lnexp~ .

This amounts to saying that RR has a Lognormal distribution.
To obtain an estimate of the SE[ln(RR)], consider the following two-by-two table:

 Exposed Unexposed

Cases a b

People at
risk

N1 N0

For the rate ratio the SE is obtained by:

()[]
ba

RR
11

lnSE +=

For the risk ratio the following equation holds:

()[]
01

1111
lnSE

NbNa
RR −+−=

If no two-by-two table is available but the confidence interval is known, then the
SE[ln(RR)] can be obtained using the following equations (assuming a 95%
confidence interval):

() ()
() ()[] () ()[]RRSERRRRSERR

CICIR

ln96.1lnln96.1ln

lnlnln 959595

+−+=

−= −+

()[]
() ()

92.3

lnln

96.12

ln
lnSE 959595

−+ −
=

×
=

CICIR
RR

The drawback of the assumption that ln(RR) has a Normal distribution is that the
mean of the sampled values from this distribution is somewhat higher than RR
because of the skewed Lognormal distribution. Ersatz therefore has an ErRelativeRisk
function with an adjustment such that the mean of the sampled values equals RR. The
drawback of the correction is that the resulting uncertainty interval is shifted
somewhat than otherwise would occur. The user will have to decide which is the
lesser of these two evils.

Ersatz User Guide 34

See the Ersatz Function Overview for details on the ErRelativeRisk function, and
(Barendregt 2010) for details on the correction.

Some more general guidance
Apart from the issue of the valid range of a model variable there are some more
general considerations to choose specific distributions for certain types of variables.
Below is a list of suggestions.

• In many cases the Normal distribution is an obvious choice: by virtue of the
central limit theorem the mean of a sample of sufficient size will have a
normal distribution, irrespective of the underlying distribution. Moreover,
‘sufficient size’ does not mean huge: this property of the mean emerges for
surprisingly modest sample sizes.

• As discussed above, prevalence and probability are best modelled using
Binomial or Multinomial distributions, and their continuous approximating
distributions, the Beta and the Dirichlet respectively.

• A constant rate6 in an age or time interval is often assumed to have a Poisson
distribution with the number of cases as its parameter. As a continuous
approximation of the Poisson distribution the Gamma distribution can be used.
The Gamma that approximates a Poisson(ν) distribution is Gamma(ν,1). When
not the number of cases but the mean (denoted by m) and the standard
deviation (s) of the rate are given, the parameters of the approximating
Gamma(α,β) are:

2

2

s

m
=α , and

m

s
2

=β .

• Survival can be modelled either non-parametric (i.e. empirical) or parametric.
For empirical survival Ersatz provides the ErSurvival function, see the Ersatz

Function Overview for details. Parametric survival is often modelled using the
Weibull distribution (“time to failure” in engineering cycles), but the
Lognormal and Gamma distributions mostly give very similar results.

• Costs are usually attached to units of resources: number of drug prescriptions,
hospital days, etc. Such discrete count data are modelled using the Poisson
distribution with the number of units as the parameter. Again the Gamma
distribution can be used as a continuous approximation, see the discussion of
rates above.

• Utility and disability weights are usually confined to the 0..1 range, which
makes the Beta the distribution of choice. Sometimes health states worse than
death are allowed, the corresponding utility can be modelled as 1- a skewed

6 Unfortunately, epidemiologists are often very sloppy in the use of technical terms. It is fairly standard
to speak of the ‘prevalence rate’, while prevalence is clearly a proportion, for example. Rate is here
properly defined as the number of cases in a time interval, divided by the person-years at risk (or any
approximation thereof).

Ersatz User Guide 35

distribution such as the Lognormal, see the discussion on one-sided limits
above.

The take-home message from this section is that choosing distributions for the
variables in your model is not an arbitrary process: a careful choice of distributions
avoids problems, makes the model more elegant, and in some cases, such as
prevalence, relative risk, and utilities, aligns the model with existing theory and
practice in epidemiology and health economics.
Readers will have noticed that I haven’t recommended the use of the Triangular
distribution in the guidance above, despite this distribution being rather popular. In
fact, I agree with Briggs et al that the use of the Triangular distribution should be
avoided (Briggs, Sculpher et al. 2006). It is an ugly distribution because of the
discontinuties, and it lacks a grounding in statistical theory.
Nevertheless there may be circumstances where you have indeed not more than the
opinion of a single expert about a minimum, a maximum, and a most likely value for
one of your variables7. That is a rather desperate situation, but even then you are
probably better off using the Pert instead of the Triangular distribution.
The Pert distribution (see the Ersatz Function Overview for details) takes the same
parameters as the Triangular (minimum, mode, maximum), but it is in fact a re-scaled
and re-parametrised Beta distribution. It therefore is firmly grounded in statistical
theory, and, while serving the same purpose, does not have the drawbacks of the
Triangular distribution. Ersatz provides the Triangular distribution, but I most
emphatically do not recommend its use.

7 When you have several expert opinions, non-parametric bootstrapping is a good option.

Ersatz User Guide 36

Multiple runs

Introduction

Ersatz offers the option of doing multiple subsequent runs. When checking the
‘Multiple runs’ box on the ‘Settings tab’, an additional box on the ‘Calculation panel’
becomes visible, allowing to specify the number of runs Ersatz will perform
consecutively.
The reader may wonder why this is useful. If you do, say, ten runs in a row, each run
will supersede the results from the previous one, and at the end you will simply have
the results from the last run, with the previous ones only having wasted your and the
computer’s time.
When used like this, the multiple runs option indeed makes no sense. But there are
circumstances where it does, and these include, but are not limited to, the following:

1. Each run implements a different intervention.
2. Each run uses a different assumption on a parameter such as discount rate.
3. Each iteration applies the intervention to different sub-populations, such as

different age groups, and the result for the population is the sum over these
sub-populations.

4. Microsimulation, where an iteration stands for an individual, and a run for a
population.

The case of microsimulation is discussed in the section of that name above, here I will
discuss the first three instances.

Different interventions, assumptions, or sub-populations

When multiple runs are used to process a number of different interventions and/or
using various assumptions that affect the outcome, Ersatz is basically being used in
batch mode. Each of these interventions/assumptions could have been analysed in a
single run, but the user prefers to lump them all together in one big go.
I must admit to doubts about the usefulness of this. It requires to put in special
functions to save the results, but you will miss out on much of the detailed output
anyway, and it will tie up your computer for an extended period. But some people
prefer it that way, and Ersatz lets you.
A stronger case for multiple runs, and one that I have used repeatedly, is when the
same model (with different data) is applied to several sub-populations, and the result
you are after is the sum (or average) over those sub-populations. In particular, since
age is such an important determinant of health outcomes, we always model age
explicitly for our health economic evaluations. However, the model structure is the
same for each age group, it is just the parameters that differ.
In those cases the multiple runs option allows to model each age group explicitly
without having to replicate the model for each age group. The way we did this was to
set the number of iterations equal to the number of age groups we distinguished, and
set the number of runs equal to what normally is the number of iterations (say, 2000).
With the ErIteration() function, that returns the number of the current iteration, we
cycled through the age groups in each run, while using the Excel Index and Match
functions to look up the appropriate data for the age group at hand.
While this works a treat, it also gets beyond basic Excel use and moves into the realm
of programming. The example workbook ‘BreastCaMarkovMC’ shows how to do
this, and the next section discusses the Ersatz and Excel functions that are particularly
useful for this kind of modelling.

Ersatz User Guide 37

Useful functions for multiple runs

ErRunoutput and ErRunSensInput
The ErRunOutput function is a variant of the ErOutput function that picks up only a
single value at the end of each run. When the option “Use ErRunOutput functions” is
checked, Ersatz will use the ErRunOutput function values from multiple runs to
calculate medians, means, and confidence intervals across those multiple runs, in
effect treating the outcome of a run the same as the ErOutput function treats the
outcome of each iteration.
ErRunSensInput is the function similarly matched to ErSensInput, and can be used to
do sensitivity analysis across multiple runs.

ErCondStoreArray and ErCondRetrieveArray
The ErCondStoreArray and ErCondRetrieveArray functions are variants of the
ErStoreArray and ErRetrieveArray functions that store and retrieve Excel ranges,
depending on a Boolean input parameter being true. Of course this Boolean can be
made true on any condition, but one of them is at the end of a run, which would make
these function behave similarly to the ErRunOutput function discussed above.

ErTotal and ErMean
The statistical functions ErTotal and ErMean return a single value at the end of a run.
Used together with the ErRunoutput function these (and other statistical) functions
allow you to determine what will be stored in the ErRunoutput function. ErTotal gives
the sum of its input parameter over the iterations in a single run, while ErMean gives
the average. Other statistical functions that report a value at the end of a run are
available, see the Ersatz Function Overview for details.

ErIteration, ErSetItno, and ErRunno
Often when using multiple runs it is necessary to know which iteration or run is
currently being executed. For example, when there are a number of age groups to loop
through in each run, you often need to know which age group (=iteration) you are
currently dealing with in order to look up the applicable data. The ErIteration function
returns the number of the current iteration, and ErRunno of the current run.
ErSetItno is handy when you need in a particular model a specific number of
iterations at all times. For example, you have modelled 15 age groups, or 2448
patients (in a microsimulation model). The ErSetItno function allows you to enter that
specific number in the spreadsheet, making sure that always the correct number of
iterations is executed.

ErFixed
If you need to look up data depending on the current iteration or run number, there are
several options. Ersatz offers the ErFixed function, that lets you get a specific value
from a range. Excel has the Hlookup and Vlookup functions, but a better (faster)
choice is often the Index function. In this context Excel’s Match function can be
useful too, see the Excel Help for details and the example spreadsheets for
applications.

ErConditional
By default all Ersatz random functions draw a new value at each iteration, and in most
cases this is the desired behaviour. However, when using multiple runs there likely

Ersatz User Guide 38

are variables you want new random draws for only some of the iterations, or even just
once per run. For instance, an effect size often applies to all age groups, so if you are
using the multiple runs option to model various age groups in your population, you’ll
want to draw a single value per run and apply that to all age groups.
Similarly, in microsimulation, where an iteration stands for an individual, you have to
do uncertainty analysis by doing multiple runs, with some individual level functions
(such as ErSurvival) drawing a random value at each iteration, while population level
functions (such as ErRelativeRisk for effect size) draw a random value only once for
each run.
For this situation Ersatz offers the conditional firing option and the ErConditional
function. Which one of the two is most suited will depend on your application, see the
section on Conditional firing below.

Ersatz User Guide 39

Excel macros

Introduction

Extended functionality in Excel is often implemented by macros, based on Visual
Basic for Applications (VBA) code. Ersatz lets you execute Excel macros before
and/or after each iteration, and before and/or after each run.

Recalculation during macro execution option

During macro execution the spreadsheet is likely to be recalculated, which would
normally prompt the Ersatz functions to draw a new value. However, by default the
Ersatz functions will not draw new values during macro execution. If this is not the
desired behaviour you must uncheck the check box on the Macro window.

Excel macros are slow

A word of warning is in place here: Excel macros are slow. This may not be obvious
when you execute a macro just once, but when a macro is executed hundreds or
thousands of times, it starts to add up.
For example, in one of my own applications an uncertainty analysis was done for an
admittedly large spreadsheet (Gartner, Barendregt et al. 2009). On each iteration
Ersatz would draw prevalences of smokers, former smokers and non-smokers from
survey data using Dirichlet functions. The results from these draws were then used to
fit a model of smoking uptake and cessation, the fit being done with the Excel Solver
add in that was called on each iteration by a macro8. The 2000 iterations took about
24 hours to run!
This may be an extreme example, but the take-home message is that if you can avoid
using macros, for example by using the techniques discussed in the section on
Multiple runs, you will usually be much better off.

8 This was before Ersatz version 1.1 implemented its own optimization functions.

Ersatz User Guide 40

Conditional firing

Introduction

By default the Ersatz random functions draw a new value at each iteration. In most
instances this will be the desired behaviour, but there are exceptions. Above I
discussed microsimulation and the use of the multiple runs option, both cases where
you might want to restrict the number of times some of the Ersatz functions draw to,
for example, once at the start of each run. And of course there may be other reasons to
restrict the number of times the functions should fire.
Ersatz offers two ways to implement this: the ‘Conditional firing option’ and the
‘ErConditional’ function. They are operated very differently, one as an option in
Ersatz, the other as a function in the spreadsheet.

Conditional firing option

This option is accessed by choosing ‘Options|Conditional firing’. This will open the
Conditional firing window, which displays a list of the Ersatz input functions in the
connected spreadsheet, together with the conditions that apply to each of them (which
will be the default value of ‘Every iteration’ at first display). The condition fields in
the list can be changed for each function individually using the drop-down list of that
field. Available options are ‘Once at the start of the run’ and ‘None’, the latter
meaning that the function will return its mean value at each iteration. Please note that
in order for the conditions to take effect, the check box on this window needs to be
checked.
You can save the settings of the condition fields to a spreadsheet (use Ctrl-C), edit
them, and paste them back in (use Ctrl-V), or equivalently use the popup menu when
you right-click the list. The ‘Reset list’ button will reset all conditions back to the
default condition specified in the ‘Default condition’ radio box.

ErConditional

ErConditional is one of the functions that Ersatz adds to Excel. ErConditional takes a
boolean and an arbitrary other value as parameters, see the Ersatz Function Overview
for details. This other value may come from an Ersatz random function or from any
other source. When the boolean is TRUE ErConditional returns the current other
value, when FALSE the previous one, or, to put it differently, the value returned by
ErConditional is kept constant.
For example, when you obtain the boolean value from “(ErIteration()=1)” it will be
TRUE only at the start of each run. A random value from a function that is the value
parameter of ErConditional that is drawn at this first iteration will then be returned by
ErConditional for the rest of that run.
Of course the boolean value can be made to depend on any user-defined condition,
making this a very flexible choice.

Conclusion

Ersatz offers two possible solutions if you want to restrict the number of times its
random functions will fire. The ‘Conditional firing’ option is rather limited, but
requires no changes to the spreadsheet. The ErConditional function is the most
versatile, but has to be implemented in the spreadsheet. Which one will work best for
you will depend on your application.

Ersatz User Guide 41

Optimization

Introduction

Like some other topics touched upon in this User Guide, optimization constitutes a
whole area of research by its own. It is possible, and people have done so, to write
whole books on the subject, or even on a single method. This section will only give a
very brief introduction to the topic, and primarily with a view to what has been
implemented in Ersatz, and how to use it. For those looking for a more comprehensive
overview of the topic, the Wikipedia page on ‘Optimization (mathematics)’ is a good
place to start.
There are many different computer algorithms available for optimization, and new
ones, or modifications of existing ones, are developed all the time. There are two
reasons for this (and they are very important to take on board):

1. Optimization tends to be costly (as in ‘taking a lot of computer time’), so there
is a constant drive towards more efficient algorithms.

2. There exists no ‘one size fits all problems’ algorithm. An algorithm that blazes
through one kind of problem can spend an inordinate amount of time on
another, or even fail miserably. And some algorithms are designed to tackle
very hard problems (which means they throw a lot of computing power at it),
and you would waste your and the computer’s time to apply it to a problem
where a more efficient method could do the job just fine in a fraction of the
time.

The take-home message here is that you should always be aware of the kind of
optimization problem you have on your hands, and what method would be most suited
to solve it.
Because no single method is best under all circumstances, Ersatz implements four
different ones. The remainder of this section will first discuss some basic concepts in
optimization, and then describe the kinds of optimization problems the user should be
aware of, matching them with the most suitable optimization method. Finally, I will
give details of the four methods, the various options they take, and give some rules of
thumb when to use what.

Some basic concepts

Setting the stage
An important distinction is the one between combinatorial and continuous function
optimization. Much of the mathematical literature is on combinatorial optimization,
which looks at problems with a countable but very large number of distinct outcomes.
A famous example is the ‘travelling sales person’ problem: find the shortest route to
visit N places without visiting any place more than once. While this is an interesting
problem (and certainly not without practical application), it is not the kind of problem
that we are concerned with here.
Continuous function optimization comes in when we need to find the parameters of a
function that will make the function return a specific value9. More formally, we have
a function f which takes a N-dimensional vector of parameters x, and we want to
know the value of x which will make f(x)=y. This kind of problem returns time and

9 Please note that, despite the adjective ‘continuous’, this includes functions that return discrete
outcomes, such as ‘number of patients developing metastases’. For the purpose of the discussion here,
this is a continuous outcome, albeit one with granularity.

Ersatz User Guide 42

again in health economic evaluation (as in many other applications). For example,
what combination of probability to develop metastases and parameters for survival
with metastatic disease will reproduce the observed number of deaths from breast
cancer?
The reader should note two potential difficulties at this point. Firstly, there may not
exist an x such that f(x)=y. And secondly, there may exist multiple xs such that f(x)=y.
The second difficulty, while not trivial, is one that can be solved by using additional
information. For example, a solution may exist that requires one or more of the x in x
to be negative, which may be impossible (because they are probabilities, for
example). This leads to the topic of constrained optimization, see below.
Nevertheless, even after adding information, you may end up with a range of possible
parameter values instead of some point values. Such is life.
The first difficulty, no x exists such that f(x)=y, is tackled by reformulating the
problem from achieving a specific target outcome to a minimization problem. In
particular, we define a loss function such that minimizing the loss function with
respect to the input vector x will result in an outcome that is as close as possible to the
desired outcome y. A frequently used and effective loss function is the squared

difference, ����� − ���, which can be generalised to a sum of squared differences in
order to achieve a range of desired outcomes (see below for a more detailed
discussion of the loss function).
A further advantage of using a loss function is that all optimization problems (finding
a maximum, a minimum, or a specific value) are reduced to the same problem:
finding the minimum of a loss function. This is why optimization in Ersatz is
implemented as minimization only.

An example: the OptimizationIt workbook
To make all this more concrete, consider the example workbook OptimizationIt.xls
(as all examples available from the Ersatz entry in the Windows start menu). This
workbook has (made-up) data from three annual surveys about smoking prevalence.
In order to estimate the annual trend in smoking prevalence, a linear function has been
fitted through the three observations, which leads to an annual change in smoking
prevalence of -2.7 percent point (cell B18).
However, the smoking survey data are subject to sampling uncertainty, and therefore
the estimated annual trend should get an uncertainty interval. The sampling
uncertainty of the survey data has been modelled by Beta distributions with
parameters number of smokers and non-smokers, respectively (if you wonder why
Betas and why these parameters, check out the topic on Good Modelling Practice in
this User Guide).
In order to obtain an uncertainty interval for the estimated annual trend we need to
draw random values from the Beta distributions, refit the linear function, and repeat
this procedure many times.
In the workbook this has been implemented using the Ersatz optimization functions
ErMinimize (cells B12 & 13) and ErMinimizeResult (cell B16). These two functions
always work in tandem, and both need to refer to the same name in order to do so (in
the example ‘fit1’ in cell B10).
In addition to the name parameter, ErMinimize takes an Excel range as an input
parameter. These values act as the starting point of the minimization, see below for
more on starting values. The output of ErMinimize is a range of the same dimensions

Ersatz User Guide 43

as its input range, and to achieve that ErMinimize has to be entered as an Excel array
formula10.
The ErMinimizeResult function takes, in addition to the name parameter, the outcome
of the loss function as a parameter. The loss function is modelled as the sum of
squared differences (using Excel’s SUMXMY2 function) between the observed
survey data points and the fitted values from the linear function.
To run the optimization, check the ‘Optimization’ box in the Ersatz area of the
Settings tab: this will open the Optimization tab. You then type the name of the
ErMinimize function (‘fit1’) into the Name textbox, leave the other settings
unchanged, and click the ‘Calculation’ button. Ersatz will do the specified number of
iterations, fitting the linear function after each iteration. Output of the run is the
distribution of the trend in smoking prevalence, and the sum of squared differences
between the survey data points and the fitted values (this should be positive but close
to zero).

An iterative process
So how do optimization algorithms go about their business? Basically, by trial and
error. The algorithm puts in a trial vector of parameters x, and obtains the outcome of
the loss function. Next it puts in another trial vector, and evaluates the loss function
again. If this looks better (i.e. is less), then it thinks it is on right track, and tries
something similar. If it is worse, it tries something else. It stops when nothing it
comes up with gives an improvement, or when it has reached the maximum number
of tries.
In other words, it is an iterative process, and that is why it tends to be computationally
costly. In large part, the computational load is determined by the number of loss
function evaluations (in Excel speak: recalculations of the workbook) the algorithm
requires.
Some algorithms, such as the Quasi-Newton, put a lot of smarts into guessing what
the next trial vector should be, and consequently can be very fast, but are vulnerable
to deviations from the assumptions they make about the problem. Others, such as the
Down-hill Simplex method, don’t try as hard, therefore require more loss function
evaluations and generally are slower, but are also more robust.

Local minima: the bane of optimization
A common problem in optimization is the existence of local minima. What we want
to find is the global minimum: the point where the loss function reaches its lowest
value. But many optimization problems can be visualised as hilly landscapes: there
will be one valley that is the deepest, but there may be many shallower ones around.
Once the optimization algorithm has entered such a shallow valley, it will tend to find
its lowest point, and then quit.
A number of strategies have been proposed to deal with this problem, none of which,
however, offers a sure fire solution.

1. If you have a reasonably good prior idea which values of the parameters will
give rise to the global minimum, supply these values as the starting point of
the optimization. More in general: you should provide starting values for the

10 See the Excel Help on array formulas. Briefly: select the range of cells you want the output range to
appear in (needs to have the same size as the ErMinimize input range), type your formula, and then
press CTRL-Shift-Enter. This will result (if all went well) in your formula appearing in all the selected
cells, embedded in curly braces.

Ersatz User Guide 44

optimization algorithm that are sensible. If you provide starting values such
that the model outcome will hardly change as a consequence of the trial
parameters the optimization algorithm comes up with, it will likely give up
right away.

2. Redo the optimization with different starting values. If you end up with a
different outcome, you can be sure that local minima are a problem (of course
you cannot be sure that you have found the global minimum). If you get the
same outcome, you may have found the global minimum (but again, you
cannot be sure).

3. Restart the optimization at the solution found (this is an option you can set in
Ersatz). The optimization algorithms take some bold first steps, and resort to
smaller and eventually tiny steps if they think to be close to a minimum. If the
minimum you’ve found is a local one, the bold first steps of a restart might
take you out of it (and then again, they might not).

With all the caveats in the above paragraph, it will be clear that these strategies are
only partial solutions at best. Therefore a more radical approach has been developed:
stochastic optimization.

Stochastic optimization
The discussion so far has (implicitly) been about deterministic optimization:
algorithms that always will choose a direction that gives a lower outcome of the loss
function. As we have seen, this makes them vulnerable to ending up in local minima.
Stochastic optimization uses algorithms that try to avoid this pitfall by introducing a
stochastic element into the decision making. Ersatz implements two such algorithms:
Simulated Annealing and Cross-Entropy (more details on the methods are below).
By casting a wider net, these algorithms can indeed avoid at least some of the local
minima, but there is a price. The Cross-Entropy method, for example, needs
something like 20 times as long to run the OptimizationIt.xls workbook than the
deterministic Quasi-Newton and Down-hill Simplex methods. Clearly, you would
rather not use Cross-Entropy unless necessary.

Noisy optimization
Yet another hard problem in optimization occurs when the outcome of your model
(and therefore your loss function) is stochastic. It is easy to see why this will upset
the optimization algorithm: when the target value moves around randomly, it
becomes very hard to zoom in on it.
But some methods get more upset than others. The Quasi-Newton method as
implemented in Ersatz cannot deal with noisy optimization at all: it goes completely
off the rails. The Down-hill Simplex method is somewhat more resilient and does
zoom in on a minimum of a moderately random loss function; however, when there,
it tends to keep trashing around and only stops when it exceeds its maximum number
of tries. The Ersatz implementation therefore offers an optional additional stopping
criterion; see the discussion of the Down-hill Simplex method below.
By their very nature you would expect the stochastic optimization methods to be best
suited for noisy optimization, and I have indeed obtained reasonable results with the
Cross-Entropy method. However, in my experience its result is not very precise, and I
tend to do a follow-up optimization with the Down-hill Simplex method.
Of course, when your model is very noisy, all the methods will fail, simply because
as stochasticity increases, the amount of information about the location of the

Ersatz User Guide 45

minimum of the loss function decreases. You may need to look into variance
reduction methods when this is the case, see for example the section on ‘Combating
randomness in microsimulation’ above.

The loss function
The loss function is a crucial element of the optimization process, and you should
give it some careful thought. Importantly, you should realise that the optimization
algorithm knows nothing about your model: it simply proposes a trial vector of
numbers, and gets back a single number from the loss function.
So that single number should contain all the information it needs: it should be lower
when the proposed vector produces a better result (and vice versa). Moreover, it
should be proportionally lower: when the result is much better, the loss function
should return a much lower number. And importantly, there should be no
discontinuities in your loss function result: a vanishingly small change in one of
numbers of the proposed vector should not lead to a sudden jump in the result.
Put differently, your loss function should be a smooth function of all the elements
that determine whether you consider a particular solution better or worse. Smooth
here means: no discontinuities and no flats (i.e. areas where the loss function returns
the same value for a large range of the input variables).
In addition, it should preferably be a balanced function: the various elements should
enter the loss function with a comparable size, rather than the physical size of the
variable. For example, if you enter a total number of incident cases together with
prevalence as a proportion, the optimization algorithm will basically ignore the
proportion (a number between 0 and 1) and focus on the much larger number of
incident cases exclusively.
So you might need to scale your variables that enter the loss function such that they
are of comparable size. You might also want to weigh the variables such that the ones
you deem more important are more closely matched in the solution than the less
important ones.
If you come away from this discussion with the impression that designing a loss
function is a bit of an art, then that is exactly the kind of message I wanted to convey.
Typically, in complex cases with many variables in the loss function, its design is
something you will revisit a few times, depending on the outcome of a previous
optimization run. But simply taking the sum of squared differences between target
and model outcomes as a loss function usually is a good place to start.

Constrained optimization
It often happens that you want to fit some variables that can take on only a limited
range of values. For example, you want to fit the parameters of a Weibull distribution
that models the time to failure of a hip replacement such that the number of secondary
hip replacements fits the observed one.
The two parameters of the Weibull are constrained to be larger than 0. But remember,
the optimization algorithm knows nothing about your model, and will happily propose
negative values for the Weibull parameters. The result is mayhem: the Weibull
function returns #NUM!, and so do your model and the loss function, and the
optimization algorithm is thrown off course.
You might think you can fix this in the loss function: if one of the Weibull parameters
proposed is ≤0, then return a large penalty instead of #NUM!. However, this is a bad
solution: it creates a discontinuity in your loss function (which, see discussion above,

Ersatz User Guide 46

should be smooth), and the optimization algorithms have a tendency to get stuck on
discontinuities.
A much better solution is to use a transformation on the number the optimization
algorithm proposes such that the transformed number is never ≤0, and use the
transformed number as the actual Weibull parameter. This lets the optimization
algorithm roam freely without causing discontinuities in the loss function.
There are basically two kinds of constraints: one-sided and two-sided11. These can be
handled by two solutions, with some modifications to accommodate more general
cases. Let x be the number proposed by the optimization algorithm, then the
transformation y, subject to some constraint, will be:

1. One-sided, y>0: � = 	
.
2. One-sided, y>A: � = � + 	
.
3. One-sided, y<A: � = � − 	
.

4. Two-sided, 0<y<1: � =

����

5. Two-sided, A<y<B: � = � + �� − ��

����

These transformations take much of the sting out of constrained optimization.
Strongly recommended.

Iteration or Run

On its Optimization tab Ersatz offers, in addition to the choice of four optimization
methods and their options, the choice between Iteration and Run. These are very
different options for very different purposes, and it is important to understand their
fundamental difference. First: what do they do?

The Iteration option
With the Iteration option you can fit the results of a single iteration (see the
OptimizationIt.xls example workbook, discussed above). You do a normal single run
with the Ersatz functions drawing random numbers on each iteration, and the number
of iterations determined by the ‘Number of Iterations’ box in the Calculation panel (or
by a ErSetItno function in the connected Excel workbook).
The difference is that after the Ersatz functions at each iteration have drawn their
random number, they are switched off12 and the optimization routine kicks in. The
optimization will do whatever you have instructed it to, and only after it returns the
ErOutput functions will pick up the values for that particular iteration. And next
Ersatz will start the next iteration.
No questions are asked: the optimization is run and when it ends its result is
summarily accepted. So you might want to put some ErOutput functions on various
intermediate variables to check afterwards whether the optimization results make
sense.
The Iteration option has an additional option: a check box allows limiting the
optimization routine to the first iteration only. When checked, the optimization is run
for the first iteration, and the value obtained is returned for all subsequent iterations.
This will be useful only in rather specific circumstances. I needed it when running an
uncertainty analysis of a micosimulation model, where each iteration is an individual

11 Of course, theoretically you might have much more complicated constraints, but I haven’t seen those
in real applications.
12 Switched off in the sense that they will return the same previously drawn random number for as long
as the optimization routine is busy.

Ersatz User Guide 47

and the multiple runs option is used to simulate a population. In that case, population-
wide uncertain parameters (so-called “second order uncertainty”) are drawn at the
start of the run, and then kept constant during the run (typically using an
ErConditional function that checks whether ErIteration returns 1, see the
BreastCaMicroUnc example for this set-up). Under these circumstances, this “First
iteration only” option allows to run an optimisation after drawing the population-wide
value, and make the result apply to the whole population.

The Run option
With the Run option you can fit the results of a run (see the OptimizationRun.xls
example workbook, discussed in the Examples section below). Since optimization is
an iterative procedure, this means to do multiple runs, with the number determined by
the optimization algorithm.
Each run is a normal one, with the Ersatz functions drawing random numbers on each
iteration, and the number of iterations determined by the ‘Number of Iterations’ box
in the Calculation panel (or by a ErSetItno function in the connected Excel
workbook). However, in order to get the run results into the loss function, you will
need to use some of the Statistical functions (such as ErTotal, ErMean, etc., see the
Ersatz Function Overview for the complete line-up), that return results at the end of a
run.
Please note that choosing this option may mean a lengthy calculation. In addition, it is
difficult to predict how lengthy, because it is the optimization algorithm that,
depending on the options you set, determines how many runs will be done.

What to choose?
What to choose depends on what you need to do. The two example workbooks give
typical applications of each option. In OptimizationIt.xls a line is fitted to the results
of random draws from three ErBeta functions to obtain an uncertainty interval around
the estimated annual trend. So this option is useful when the link between your
random functions input and the model’s outcome is not obtained by straight
arithmetic, but involves such a fit procedure.13
Please note that, from the viewpoint of the optimization algorithm, this is not noisy
optimization: while the results from the ErBeta functions differ between iterations,
the optimization has to deal with a single set of results, and ends before the next set of
random numbers is drawn.
In the OptimizationRun.xls workbook the outcome of a run, returned by an ErMean
function, needs to be fitted to a target value. This would be a typical thing to do when
you have developed a microsimulation model, where an iteration stands for an
individual, and a run gives the outcome for a population by simulating a large number
of individuals.

13 This particular problem could also have been tackled using an Excel macro to call the Excel Solver
after each iteration. However, as mentioned in the section on Excel macros, this is slow: the
macro/Solver approach takes about 6 times longer than the solution with the Ersatz minimization
functions. You don’t have to take my word for it: the OptimizationIt workbook has a macro called
‘solverfit’ included. If you change the equations in B8-D8 to refer to C12 & C13 instead of B12 & 13,
check the ‘Execute macro after each iteration’ box in the Options|Macros and type ‘solverfit’ into the
associated text box, you can run this yourself. Make sure that in Visual Basic the Solver is referenced
(Choose Tools|References, and check the SOLVER box). Please note that the optimization performed
in the OptimizationRun workbook cannot be done with any Solver and macro combination.

Ersatz User Guide 48

Since the outcome of a microsimulation model, and of an Ersatz run in general, is
typically random, this option will usually result in noisy optimization, with
consequences for the kind of method to use, see below.

Four methods

This section discusses the four optimization algorithms implemented in Ersatz,
including the options they take. The reader should be aware that options with the
same name between methods do not mean the same thing. For example, ‘Tolerance’ is
an option that determines how hard the algorithm will try to achieve the loss
function’s minimum, but that does not mean that the same value for this option results
in the same level of precision.
A general option all methods share is the number of restarts. As discussed above, it
can be useful to restart the optimization at the result of a previous one, in an attempt
to avoid having ended-up in a local minimum. The default number of restarts is 0
(meaning no restarts), the maximum is 10 (but that is way over the top). If you want
to use this feature, one or two restarts should do the trick (unless they don’t, but then
more probably won’t help either).
The first two are deterministic, the second two stochastic optimization methods. All
are multivariate (i.e. take a vector of input variables) but they can be used for
univariate optimization (i.e. take a vector of length 1) as well. In the subsequent
section I will discuss when to use what.

Quasi-Newton
This is an implementation of the Broyden-Fletcher-Goldfarb-Shanno version of the
Quasi-Newton (QN) algorithm, using the finite differences method to calculate partial
derivatives. It is a deterministic method, based on (Press, Teukolsky et al. 2007).
Very briefly, this method is a generalization to multiple dimensions of a line
minimization method that gathers information on the gradient of the loss function to
make an informed guess on what to propose as the next vector of input values. If the
loss function is reasonably approximated by a quadratic function, then the QN-
algorithm can be very fast indeed. However, it requires the loss function to be
deterministic, and is therefore quite unsuitable for noisy optimization.
Options:

1. Tolerance. Default value: 0.01. Lower values will force the algorithm to use
more tries to get closer to the loss function minimum and will require more
loss function evaluations (and therefore more run time), and vice versa.

2. Maximum tries. Default value: 500. This is the maximum number of loss
function evaluations, and it set so high that it should never be reached. Putting
in a much lower number will possibly reduce the number of function
evaluations (and therefore run time), but when the algorithm is stopped by this
criterion, it implies that its Tolerance criterion is not met.

Down-hill Simplex
The Down-hill Simplex (DS) method is a native multivariate optimization
deterministic method due to Nelder & Mead. It uses a very simple algorithm to guess
the next vector of input values, and, unlike the QN algorithm, does not use
information on the gradient of the loss function. As a consequence, it usually requires
more loss function evaluations and tends to take more time. But in my experience,

Ersatz User Guide 49

this depends very much on the actual optimization problem, and the difference with
the QN method is often negligible and sometimes even in its favour.
DS begins by using the N start values to set up a simplex: N+1 alternative input sets,
where all values equal the original one except one which equals the original start
value times 1 + the value of the initial simplex option. It then evaluates all the new
combinations, picks the best one, and tries to improve by modifying it. And so on.
The behaviour of the DS simplex as it crawls through our hilly landscape has been
compared with how an amoeba would squeeze itself through narrow holes, and the
implementation in Ersatz is based on the same-named algorithm from (Press,
Teukolsky et al. 2007).
Because it relies on loss function evaluations only, the DS method is less vulnerable
to noisy loss functions than the QN method. While it does not completely go off the
rails for moderately noisy loss functions, it does not really know when to stop: as
mentioned above, when it gets near the minimum, it tends to keep trashing around
and only stops when it exceeds its maximum number of tries.
This is because the standard stop criterion kicks in when the difference between the
target and the model outcome value becomes sufficiently similar for the best and
worst solutions. But this never happens when the model outcome keeps jumping
around.
Therefore I’ve implemented an additional stopping criterion for use with noisy
optimization: when the simplex becomes sufficiently small (meaning that the amoeba
is not going anywhere), this will cause a stop as well.
Options:

1. Initial simplex. Default value: 0.1. This sets the starting simplex. Increasing
this number increases the number of loss function evaluations needed,
decreasing it increases the likelihood that the algorithm gets stuck in a local
minimum near the starting values.

2. Maximum tries. Default value: 500. The same comments as for the QN
maximum tries option apply.

3. Tolerance. Default value: 0.01. See the QN comments here as well.
4. Noisy optimization check box. Default value: unchecked. When checked, the

additional stopping criterion described above becomes active.
5. Noise tolerance. Default value: 0.0001. Enabled only when the Noisy

optimization check box is checked. Lower values will cause the additional
stopping criterion to kick in later, and vice versa.

Simulated annealing
Simulated annealing (SA) is a stochastic optimization method, that has been
successfully applied to very hard problems. However, most of the action has been in
the field of combinatorial optimization (for example, the travelling sales person
problem), and much less in the continuous function optimization we need. The
algorithm implemented in Ersatz is based on a stochastic variant of the DS method
described above (Press, Teukolsky et al. 2007).
SA derives its name from an analogy: annealing is the slow cooling of liquid metals
which allows all atoms to find their place in a crystal structure, which represents the
lowest possible energy state of the system (and also the configuration that is
strongest). The method sports options such as ‘starting temperature’ and ‘cooling
factor’ that play on this analogy.

Ersatz User Guide 50

While the deterministic DS algorithm always takes the down-hill direction, the SA
variant will randomly go up-hill as well, with step sizes depending on the temperature
at the time. The process starts at a high temperature, with big random jumps through
the hilly landscape for a maximum number of tries or when it has reached the
precision set by the tolerance level, whichever comes first (it will mostly be the
maximum number of tries, especially when the temperature is still high). Then the
cooling factor is applied to the temperature, and the process repeats. When the
temperature hits 0, the algorithm will end. The algorithm remembers the best
outcome ever, and as it ends will report that.
The maximum number of tries is per annealing level, so the maximum number of loss
function evaluations equals the maximum number of tries times the number of
annealing levels, the latter depending on the starting temperature and cooling factor,
but this product will generally be very large. In other words, this method requires
considerable time.
Options:

1. Initial simplex. Default value: 0.1. Inherited from the DS method, but the
stochastic nature of the SA algorithm makes this parameter much less
important.

2. Maximum tries. Default value: 500. See the discussion above, lowering this
value will do much to speed up the optimization, but it will increase the
probability to end up in a local minimum.

3. Starting temperature. Default value: 10,000. Higher values will cause the
algorithm to make wilder random jumps, and will also cause, given a cooling
factor, to increase the number of annealing levels. Both will increase
calculation time, but decrease the probability of getting stuck in a local
minimum.

4. Tolerance. Default value: 0.01. Inherited from the DS algorithm, but of less
importance here because the stochastic nature will make the maximum
number of tries the more likely stopping criterion.

5. Cooling factor. Default value: 0.1. A smaller cooling factor will increase the
number of annealing levels, and therefore the total calculation time, but will
decrease the probability of ending up in a local minimum. And of course vice
versa.

Cross-entropy
The cross-entropy (CE) method, due to Rubinstein and Kroese, is a rather new kid on
the block of stochastic optimization.(Rubinstein and Kroese 2008) It originated in
rare event estimation, but soon proved useful for optimization as well. Like the SA
method, most applications seem to be in the field of combinatorial optimization, but
the method allows continuous function optimization as well.
For this latter application, a number of Normal distributions equal to the number of
input values into the optimization are defined with means the starting values and
sufficiently large standard deviations. From these Normal distributions, a sample of
values is randomly drawn, and the loss function is evaluated for each of them. Then
the proportion best results (determined by the Proportion elite option) is used to
calculate a new mean and standard deviation, and with these another sample is drawn
and evaluated. The process is repeated until it runs out of the maximum number of
tries or the average coefficient of variation reaches a threshold minimum, defined by
the variance threshold option.

Ersatz User Guide 51

It is a surprisingly simple algorithm (also to implement), with a high degree of face
validity, and in my experience it works rather well. However, as with all stochastic
optimization, computational costs are high. While the literature on the CE method by
Rubinstein and Kroese makes much work of the small number of iterations needed to
get to the minimum, it ignores that for each iteration the method needs a number of
loss function evaluations equal to the sample size. Given that the sample size should
not be small, this adds up.
Options:

1. Proportion elite. Default value: 0.1. This is the proportion of the sample size
with the best results used to calculate the mean and standard deviation for the
next iteration. A larger proportion is more conservative, leading to more
iterations, but less probability to get stuck in a local minimum.

2. Coefficient of variation. Default value: 1.0. This determines the standard
deviation of the Normal distributions (standard deviation = mean times
coefficient of variation). A higher value will cause the algorithm to need more
iterations, with a lower probability to return a local minimum.

3. Sample size. Default value: 150. This is the number of randomly drawn
parameter vectors the algorithm will evaluate at each iteration. A larger
number will need more loss function evaluations per iteration, but decrease
the number of iterations needed.

4. Maximum tries. Default value: 100. Initially, when the standard deviations are
still large, this is the most likely stopping criterion, but one hopes that in the
end the variance threshold will be the one. A larger value increases the
probability that the variance threshold will be the stopping criterion, but will
cause a longer calculation time, and vice versa.

5. Variance threshold. Default value: 0.01. If the average coefficient of variation
of the current set of Normal distributions is below this value, the algorithm is
considered to have reached the minimum. A lower value will cause longer
calculation time, but higher precision. And, as always, vice versa.

When to use what?

There are few hard and fast rules about when to use which method and with what
options. And if there is any area in computation where the old economic saying of
“there is no such thing as a free lunch” applies, it is in optimization. You can try to get
better results, but always at a cost, and with marginal costs rising steeply. So a
number of rules of thumb might come in handily.

• Where possible, use the deterministic algorithms (QN & DS). They use far
less computation time than the stochastic ones.

• If you need to use the stochastic algorithms, try the CE method first. The SA
algorithm seems to spend far more time thoroughly searching through areas
where obviously no minimum is to be found (perhaps, you can never be sure,
there is a bug in the implementation).

• Use the stochastic algorithms when there is evidence of local minima. Getting
different outcomes from your deterministic algorithms for different starting
values is strong evidence of the existence of local minima.

• The probability of local minima steeply increases with the dimensionality of
the problem (which equals the length of the starting vector). Be aware, I’ve
seen the deterministic algorithms getting nowhere on problems with a

Ersatz User Guide 52

dimensionality as low as 6. So you might at least want to try one of the
stochastic methods once if you have a problem of high dimensionality.

• Never use the QN method for noisy optimization. Use instead the DS method
with the noisy optimization option checked, or else the stochastic methods (SA
& CE). Or use a combination: first the CE method to get in the neighbourhood
of the global minimum, and next the DS method

• With the ‘Run’ option you are most likely to deal with noisy optimization,
with the ‘Iteration’ option you are not.

• Experiment with the tolerance parameters. If the optimization method is trying
to achieve a precision way beyond what is useful for your application, a
reduction in the tolerance option will greatly speed up the process.

Basically, what I’m trying to say here is that you should not rely on a single method
and its default parameters for all problems. Optimization benefits by tinkering: try a
different method, or change the options, or both. The four methods and their options
offered by Ersatz give you ample opportunity.

Ersatz User Guide 53

Documentation

Examples

Introduction

The Ersatz installation comes with a number of example Excel workbooks. These
come in two categories: the purpose of the first one is give an implementation
example of each Ersatz function; the purpose of the second category is to illustrate
some more general techniques, in particular multiple runs and microsimulation. These
workbooks use a cost-effectiveness analysis loosely based on the example of

trastuzumab (Herceptin) for early breast cancer. In addition there is a workbook
illustrating the use of Ersatz for probabilistic bias quantification.
All example workbooks are accessible through the Ersatz entry in the Windows Start
menu, and through the Ersatz ‘Help|Example spreadsheets’ menu. Where they are
located on your harddisk is difficult to say: it depends on your Windows version, your
privileges on the PC, and possible changes to the proposed default directories that you
may have made during installation. Details can be found in the section Installation
issues of the Technical appendix of this guide.
Please note that the example workbooks are not protected: any changes that you make
can be saved. If you want to preserve the original example workbooks but also
experiment with them, you should first make copies of them to experiment with, for
example by using ‘Save as’ to copy them to your standard Excel workbook directory.
Of course you can always revert to the original example workbooks by re-installing
Ersatz.
Below is a brief description of each of the example workbooks. All example
workbooks can be run, and contain, where appropriate, ErOutput functions to inspect
the results in Ersatz. The examples should be studied with the Ersatz Function

Overview document at hand.

FunctionLineup

This workbook contains examples of most of the functions that Ersatz adds to Excel.
Exceptions are mostly rather more complex functions such as the component
functions in the special ComponentFunctions workbook.
The FunctionLineup workbook has several worksheets:

• StandardDistributions contains the normal random distribution functions
(including the Normal).

• ErEmpirical is devoted to the two modes of this function: discrete and
continuous.

• ErSurvival gives examples of the ErSurvival function (including the effect of
having survived to a certain age) and the ErSurvival2 function, which allows
using a single uniform random draw to get survival durations from different
survival data. See also the Survival123 and BreastCaMicro example
workbooks for the use of these functions.

• SpecialFunctions contains examples of the special (i.e. non-random) functions,
such as ErIteration.

To run this workbook, start Ersatz, set the number of iterations and press Calculate.

Ersatz User Guide 54

Output2Workbook

In most cases, outputs from your workbook are picked-up by ErOutput functions, and
transferred and displayed in the Ersatz executable. However, in some circumstances it
is more convenient or even necessary to get the outputs into the workbook itself. This
example workbook illustrates the use of functions that allow just that. There are two
worksheets:

• StatisticalFunctions implements the Ersatz statistical functions that return
summary statistics at the end of a run. Basically, these are the outputs that you
get in the Ersatz Summary outputs tab. Not present here is ErCorrelation,
which can be found, among others, in the ComponentFunctions workbook.

• The DataFunctions worksheet implements the ErData and ErDataArray
functions. The former gives the value of an output at a specific iteration, the
latter at a range of iterations, starting at the first. Note that the ErDataArray
function returns #NUM! before the workbook is run.

• There is also an ErRunDataArray function for use with the multiple run
option. Please consult the BreastCaMarkovMC workbook for an example
implementation.

Please note that these functions are not available in the trial version of Ersatz, and that
this workbook is not included in the trial download.

ComponentFunctions

As described in the Ersatz Function Overview document, the Ersatz component
functions implement situations where several random numbers need to be drawn that
require some coordination. An example is correlated random draws from various
distributions. Ersatz implements this using component functions that are linked to a
corresponding master function.
Setting up such a system is decidedly more complex than the use of the standard
random functions, and therefore this workbook contains a separate worksheet for each
of the six component functions. When you first start using these functions, you may
want to copy the example into your own spreadsheet, and work from there.
A warning: when implementing a set of component functions and their master
function, make sure the checkbox ‘Show mean values while not running’ in the Excel
box on the Ersatz Settings tab is checked. If not, you may get rather puzzling #NUM!
errors.

• The Nonparametric worksheet contains an example with 10 records, each of
three fields. The data is hypothetical, but could be the results from 10
respondents that assessed disability weights for three diseases. The outcome of
interest is the average disability weight (and its variance) for each disease.

• The Randomisation worksheet example is an implementation of a
randomisation test to see whether the observed downward trend in
prescriptions for anti-hypertensives could be due to stochastic variation
(outcome: extremely unlikely).

• The Multinomial distribution is a generalisation of the Binomial to multiple
categories. Each marginal distribution is Binomial, but the sum over the
categories is always equal to the total N. An essential distribution when
modelling, for example, decision trees with nodes that have more than two
branches.

Ersatz User Guide 55

• The Dirichlet distribution is a generalisation of the Beta to multiple categories.
Each marginal distribution is Beta, but the sum over the categories is always
equal to 1. An essential distribution when modelling, for example, prevalences
or transition probabilities that have more than two categories.

• The CorrNormal worksheet gives two examples, one using a covariance and
one using the equivalent correlation matrix. Note that changing the input
correlations can easily lead to an invalid covariance/correlation matrix (just
change the cov(N1,N3) to -0.2): in that case Ersatz will not run and display a
fatal error. See the section on Valid correlation matrix in the Random numbers
topic for more information.
The output correlations are examples of the ErCorrelation statistical function,
that will give a meaningful result after a completed run only.

• The RankCorr worksheet shows how to obtain rank correlated random draws
from arbitrary functions, in this case a Gamma, a Weibull, and a Poisson. The
remarks in the previous dot point on valid correlation matrices and the
ErCorrelation function apply here as well.

To run this workbook, start Ersatz, set the number of iterations and press Calculate.

OptimizationIt

This workbook illustrates the Iteration option of the Ersatz Optimization algorithms.
Please refer to the section on Optimization above for a description of this example.

OptimizationRun

This workbook illustrates the Run option of the Ersatz Optimization algorithms (refer
to the section on Optimization above for a description of the Iteration and Run options
and other concepts mentioned here). This is a very simple optimization problem (in
fact, it is not an optimization problem at all because it is easy to derive its solution
analytically, see the E column), but it serves to illustrate the Run option, which will
almost always, as in this case, imply noisy optimization.
The task is to find the two parameters for a Beta distribution such that it will return a
specific mean (set to 0.77 in the example, cell B17) while the sum of the two also has
a specific value (set to 123 in the example, cell B18). This can be interpreted as
obtaining parameters such that the Beta distribution returns a specific prevalence,
given a population size (see the section on Good Modelling Practice if you don’t
understand this).
The ErMinimize function is entered as an array formula in cells B8-9, taking as its
starting values the range C8-9. Note that the ErMinimize function works on log-
transformed values for the ErBeta function because the Beta distribution requires both
parameters to be > 0, see the subsection on Constrained optimization in the
Optimization section above.
The ErBeta function itself is in cell B11, with the exponentiated parameters from the
ErMinimize function in cells B12-13. The target prevalence and population size are in
cells B17-18. The realized mean value from the draws of the ErBeta function is
returned in cell C17, using an ErMean function. The realized population size is simply
the sum of the two Beta distribution parameters (cell C18).
Finally, the loss function is in cell B20, consisting of squared differences functions for
both prevalence and population size. Note that the squared difference for the
prevalence is multiplied with twice the population size of cell B18: this is to scale the

Ersatz User Guide 56

parameters for the loss function to similar size. The ErMinimizeResult function picks
up the value of the loss function in cell B22.
To run this example, check the Optimization box in the Ersatz section, type the
ErMinimize function name (’fit2’) in the designated box, choose the run option and
one of the optimization methods, and press Calculate. Warning: depending on method
and options, this may take anything between a minute and many hours.
This workbook illustrates the following issues for the use of the Run option (and for
noisy optimization in general):

1. Do not use the Quasi-Newton method for noisy optimization. If you try this,
you will see it goes completely off the rails, and gives up after a short while,
returning a clearly useless result.

2. The Down-hill Simplex method does a lot better: it moves towards the
minimum, but unless you check the ‘Noisy optimization’ box, it will keep
thrashing around that minimum until it runs out of tries. If you do check that
box, it will return quickly with a good result. Please note that this method only
works when the loss function is only moderately noisy, but in that case it is the
most efficient choice.

3. The stochastic methods (Simulated Annealing and Cross-Entropy) both can
handle this case of noisy optimization. But both, and in particular the
Simulated Annealing method, take a lot of time.

CorrMultivariate

This workbook gives example implementations of the correlated multinomial and
Dirichlet distributions. In addition, it shows how to obtain a similar effect for
multivariate Normal distributions.
As with the Ersatz component functions, correlated multivariate distributions require
coordination between distributions, and a similar set up has been implemented for
these correlated multivariate distributions. The difference is that now three kinds of
functions collaborate: a single master function and input and output functions for each
of the correlated distributions.
Again as with the component functions, setting up such a system is decidedly more
complex than the use of the standard random functions, and therefore this workbook
contains a separate worksheet for each distribution. When you first start using these
functions, you may want to copy the example into your own spreadsheet, and work
from there. Also consult the Ersatz Function Overview document for implementation
details.

• The CorrMultinomial worksheet contains an example of three multinomial
distributions, each with five categories. There is also a correlation matrix, all
data is hypothetical. The master function ErMultinomialCorr picks up the
correlation matrix and the number of correlated distributions as parameters.
Linked to the master function are three ErMultinomialCorrIn input functions,
each picking up the corresponding input numbers and its distribution number
as parameters. Finally, there are three ErMultinomialCorrOut functions, each
linked to its corresponding ErMultinomialCorrIn function, and taking its
distribution number as the second parameter. These ErMultinomialCorrOut
functions are entered as ‘array functions’, see the note in the Ersatz Function

Overview document if you do not know what Excel array functions are.

Ersatz User Guide 57

• The CorrDirichlet worksheet implements the same data as the
CorrMultinomial worksheet, and the set up is, apart from the function names,
identical.

• When the multivariate distribution is set up using a number of marginal
distributions and a correlation matrix, as with the multivariate Normal, a
similar effect of two correlated multivariate distributions can be achieved by
specifying a combined appropriate correlation matrix for all distributions
involved. The CorrNormal worksheet shows how to do this.
Please note that the requirement for the correlation matrix to be valid (positive
semi-definite) puts strong restrictions on the values in the correlation matrix.
You should use the Ersatz option to check validity and, if needed, replace it
with the valid matrix Ersatz suggests (Options|Correlation).

ConditionalStore

Ersatz has functions that allow storing workbook values in memory, and retrieving the
values at a later point. This workbook contains an example implementation of the
ErCondStoreArray and ErCondRetrieveArray functions, which allow storing and
retrieving arrays of numbers, prompted by a Boolean parameter.
The example is based on a scenario where a number of interventions for a particular
health problem are available, each having an effect size and cost. But after the first
intervention is implemented, the second one will have a smaller effect because part of
the problem is already resolved by the first intervention. This is modelled by making
the potential impact fractions (PIFs) multiplicative.
To run this model, you should check the ‘Multiple runs’ options, and set the number
of runs to 100. Please note that this example also uses the ErDataArray and
ErRunDataArray functions which are not available in the trial version and that this
workbook is not included in the trial download.

BreastCaMarkovSC

This workbook implements a Markov model of breast cancer incidence and survival,

with an evaluation of trastuzumab (Herceptin) which improves survival of a
specific sub-group of breast cancer patients: those with her2-positive tumours.
Survival is based on a South Australian follow-up study, I fitted a lognormal
distribution with a proportion cured to this data (see the Data & Results worksheet).
From the modelled survival an annual excess mortality since year of incidence is
calculated. The effect size of trastuzumab (0.55, cell L4) is applied to this excess
mortality for 5 years in full (based on a meta-analysis), after that it is assumed to
attenuate (see column O).
Incidence is the number of breast cancer cases in Australia in 2003 by age times 0.2:
the proportion of her2-positive cases. The model is single cohort (that’s what the SC
stands for): you select an age group (cell F19), and the model calculates the life years
lived, costs, and incremental costs per life year gained (more generally known as
‘incremental cost-effectiveness ratio’, or ICER) for that age group. Note the use of the
Excel Index function (in worksheet Base, column B) to pick up the correct ‘all other
causes’ mortality, given the age at incidence. Also note the steeply increasing ICER
by age.
Uncertainty is implemented as an ErRelativeRisk function on the effect size (cell L4)
and an ErGamma function for the costs of disseminated/terminal disease (cell L9).

Ersatz User Guide 58

Cost of primary treatment other than trastuzumab is ignored, because assumed to be
the same for both baseline and intervention.
To run this workbook, start Ersatz, set the number of iterations (say 2000), select an
age group (cell F19), and press Calculate.

BreastCaMarkovMC

The BreastCaMarkovSC workbook calculates the cost-effectiveness for the various
incident age cohorts, but as a rule the question is not what the cost-effectiveness is for
a specific age group, but for the whole population. You could use the
BreastCaMarkovSC workbook to calculate a central estimate by totting up the results
of each age group, but doing a proper uncertainty analysis that way would be a real
hassle.
The BreastCaMarkovMC workbook (MC for multiple cohorts) solves the problem by
using the Ersatz multiple run option, see the section on Multiple runs above. This
workbook is largely identical to the BreastCaMarkovSC workbook, with the
following changes:

1. Selecting the age group (cell F19) is no longer done manually, but by an
ErIteration function. When the number of iterations is set to the number of age
groups (=14 in this case), each run will cycle through the age groups one by
one.

2. Cell F21 contains an ErSetItno function, with the number of age groups (cell
F17) as parameter. This function sets the number of iterations Ersatz will do to
the correct one.

3. Cell F23 contains a formula that will return TRUE if the selected age group
equals 1, and FALSE otherwise.

4. This boolean is used to make sure that for all ages the same randomly drawn
effect size and disease costs is used. The ErRelativeRisk (cell L4) and
ErGamma (cell L9) functions are now embedded in an ErConditional function
which takes the boolean of cell F23 as its first argument. When TRUE
ErConditional returns the currently drawn random value, when FALSE it
returns the same value as it did at the previous iteration.

5. In cells G27..29 an ErCondStoreArray and corresponding
ErCondRetrieveArray function are used to sum over ages. Note that the
ErCondRetrieveArray function returns #NUM! until the model is run. These
functions sum up the difference in life years and costs over the age groups.
Cell G30 calculates the ICER over all age groups.

6. Cells H28, 29, & 31 now have ErRunOutput functions, the special output
functions for multiple runs that store the last input value of each run.

7. Similarly, the ErSensInput functions of cells P4 and P9 have been replaced by
their multiple run equivalent ErRunSensInput.

I’ve described the differences between the BreastCaMarkovSC and -MC workbooks
in detail to drive home the point that you can start by developing a single cohort
model, and then easily convert this to a multiple cohort model using the Ersatz
functions mentioned here and in the topic on Multiple runs.
To run this workbook, start Ersatz, check the ‘Multiple runs’ and ‘Use multiple runs
input/output functions’ boxes on the Ersatz section of the Settings tab, set the number
of runs (say 2000), and press Calculate. It will take a bit of time (1 minute, 20 seconds
on my laptop).

Ersatz User Guide 59

Survival123

This workbook implements examples that are discussed in the Microsimulation
section of this guide. Briefly, Survival123 compares three ways of modelling
empirical (as opposed to parametric) survival, with the Ersatz ErSurvival function as
the preferred way.
To run this workbook, start Ersatz, set the number of iterations and press Calculate.

BreastCaMicro

This workbook is also mentioned in the section on Microsimulation, in particular on
reducing randomness. It implements the same model of breast cancer incidence and
survival as the two Markov models discussed above, but now uses the technique of
microsimulation.
Incidence is by age, and when a woman becomes incident first an age at death from
all other causes is drawn, conditional on having survived until the age at incidence
(using ErSurvival). Next a breast cancer survival time is drawn (again using
ErSurvival), using the same fitted lognormal excess mortality as in the Markov
models. The age and cause of death of the woman is then determined by the one that
comes first: all other causes or breast cancer.
Also the same intervention is implemented that models the decrease in excess

mortality due to trastuzumab (Herceptin), with a different survival curve and less
breast cancer deaths as a result.
The difference between the BreastCa1 and BreastCa2 worksheets is that in the latter a
randomness reduction technique is illustrated, see the corresponding section on
‘Combating randomness in microsimulation’ above.
The workbook also implements the ErSetItno function (BreastCa1, H19). This
function sets the number of iterations Ersatz will do equal to the number of women in
the microsimulation. Remember: in microsimulation each iteration stands for an
individual.

BreastCaMicroUnc

This workbook implements the same model as the Breastca2 worksheet in the
BreastCaMicro workbook. The difference is that it is now set up to run an uncertainty
analysis for this model. As with the BreastCaMarkovMC workbook you need to use
the Multiple runs option for at least 1000 runs.
The difference with the Breastca2 worksheet is that the effect size and cost of
disseminated/terminal disease now both have random functions (the same as in the
BreastCaMarkovMC workbook).
To run this example, start Ersatz, check the ‘Multiple runs’ and ‘Use multiple runs
input/output functions’ boxes on the Ersatz section of the Settings tab, set the number
of runs (say 2000), and press Calculate. Warning: this will take time (1 hour, 20
minutes on my laptop).

ResinBias

This workbook implements the calculations described in a draft paper (Barendregt
and Blakely Draft). The work was done in response to earlier work on probabilistic
bias quantification by Fox, Lash, and Greenland (Fox, Lash et al. 2005). They used
data from a case control study on the risk of lung cancer from exposure to resin to
illustrate the method of probabilistic bias quantification, and the same data is used in
this example.

Ersatz User Guide 60

Using assumptions on sensitivity and specificity, a bias corrected dataset is calculated
from the observed data. From this bias corrected dataset two-by-two tables are
calculated for cases and controls. We assumed these two-by-two tables to have
correlated Dirichlet distributions, scaling the numbers such that the standard
deviations of the sensitivities and specificities are similar to the ones obtained by Fox
et al.
In a final step we calculate the probabilistic bias corrected dataset, and combine the
uncertainty of the bias correction with the sampling uncertainty to a single uncertainty
interval. Like Fox et al we do the calculations for non-differential and differential
misclassification. By using the correlated Dirichlet distribution to produce the
probabilistic bias corrected datasets, we obtain much narrower combined uncertainty
intervals than Fox et al.

Ersatz User Guide 61

Error messages

Fatal errors

The following error messages are fatal in the sense that Ersatz will not run, and no
output will be produced. I’ve grouped individual error messages in, hopefully, useful
categories where appropriate.

1. “There are duplicate XX function names in the connected workbook. Run
aborted.” and:
“There is an empty string as an XX function name in the connected workbook.
Run aborted.”

Ersatz has a number of functions that require you to name them. Moreover,
Ersatz puts requirements on these names. The first is that within each function
category the name should be unique, the second that empty strings as a name
do not qualify. If you transgress these requirements you will get these error
messages.
In these error messages XX can stand for one of the following: Eroutput,
ErRunoutput, ErMultinomial, ErNonparam, ErDirichlet, ErSensinput,
ErRunSensinput, ErCorrNormal, or ErRankCorr.
The remedy is simple: make sure your functions have different names (first
case) and none of them is an empty string (second case).
Please note that when more than one Excel workbook is open, Ersatz will,
contrary to appearances (only the name of one of them will be showing in the
title bar), be connected to all14. If you have, for example, two versions of the
same workbook open simultaneously, you will get the ‘duplicate names’ error
when they have the same named functions. You will need to quit the other
workbook(s) in order to run Ersatz.

2. “An error occurred while executing an Excel macro”.

This error occurs when Excel runs into a problem while executing a macro
that you call from Ersatz. The remedy is to make sure that your Excel macro is
functioning correctly. This may sound like a cheap answer, but Ersatz really
cannot know what a macro you want it to call is up to, so this error is outside
its remit.

3. “An unknown error occurred”.

This error can occur when some Ersatz functions show #NUM! or #VALUE!
errors before you click the Calculation button. In that case the remedy is
simple: make sure all errors are eliminated before running the workbook. See
the section on Trouble shooting below.
If all functions are fine and you still get this error, it is potentially serious. It
may occur because Excel has become unstable, or Windows itself has. The
first remedy is to quit Ersatz and Excel and try again. If that doesn’t work,

14 This is not a design objective, but there seems to be no way to avoid this Excel behaviour.

Ersatz User Guide 62

reboot your PC. If the problem persists, contact EpiGear (info@epigear.com).

4. “Run cancelled by user”.

Not really an error message because you clicked the ‘Cancel’ button during a
run.

5. “ErFixed reports a number index < 1”.

Not sure why this error message is here, because it seems more appropriate in
the non-fatal category. Anyway, you’ve fed an ErFixed function a second
parameter that is < 1, which is a no-no.

6. “ErTruncate does not have an eligible embedded Ersatz random function. Run
aborted”.

Not all Ersatz functions can be subject of an ErTruncate function, and this
error occurs when you’ve picked one outside the list. See the Ersatz Function

Overview topic on the ErTruncate function to see which functions are
permitted.

7. “An ErCorrNormal function reports an invalid correlation matrix. Run
aborted”.
”An ErRankCorr function reports an invalid correlation matrix. Run aborted”.

The ErCorrNormal and the ErRankCorr functions require either a correlation
or a covariance (ErCorrNormal only) matrix. These matrices need to be
positive (semi) definite, if they are not these error messages occur. See the
topic on correlated random draws in this Guide to remedy this.

8. “Run-time Er(Run)output or Er(Run)Sensinput function is not accounted for.
Run aborted”.

One or more of the mentioned functions shows a non-numeric outcome (like
#VALUE!) when Ersatz is not running, but gets a valid numeric outcome as
soon it does. Since Excel does not call a function when its result is not valid,
Ersatz does not find it when it takes stock before the run, but then
unexpectedly finds it during the run. Remedy: see which of your functions has
this problem, and fix it.

9. “An ErRankCorrCom function does not have an eligible embedded Ersatz
random function. Run aborted”.

Most but not all of the Ersatz random functions can be used with the
ErRankCorrCom function. See the Ersatz Function Overview topic on the
ErRankCorrCom function to see which functions are permitted.

10. “This is the workshop version of Ersatz, which has a maximum of 5 input
functions. Run aborted”.

Ersatz User Guide 63

Students in the cost-effectiveness workshop at the School of Population
Health, University of Queensland, get a free but limited copy of Ersatz. If you
exceed the function number limit, this message will be shown. Remedy: either
limit the number of input functions, or buy the fully licensed version
(www.epigear.com).

Non-fatal errors

In addition to fatal errors there are also non-fatal ones: Ersatz will run, and output will
be produced, but probably not for all output variables: some or all of them will show
up as “NaN” in the summary output. “NaN” stands for “not a number”, and it implies
that either an input function has been fed a parameter value outside its range, or that
your calculations made Excel throw a fit, such as divide by zero. The error messages
will be displayed in the Message window (choose View|Messages), and Ersatz will
warn the user when there are any. The messages specify the iteration and the function
that encountered a problem.

Ersatz User Guide 64

Trouble shooting

Sometimes the combination of Ersatz and Excel will not behave as the user expects,
with a frustrated user as a consequence. In this section I try to pre-empt some of the
situations where this might occur by explaining what is going on and offering a
solution. Most of this is based on user experiences in my own work environment
(including myself). I am happy to hear of any other potential conundrums: if you have
any, please email them to info@epigear.com and I will either try to solve the issue or
add them to this list.

1. The calculation button is disabled.

Ersatz is probably not connected to a spreadsheet. If this is the case, its title
bar will read ‘Not connected’. This will occur when Excel is not running, or
when you had more than one instance of Excel running and you quit one of
them. If Excel is not running, start it and open the spreadsheet you want to
work with. Then choose ‘File|Connect to Excel’ in Ersatz. If that doesn’t
work, you may have to quit Ersatz and Excel and start anew.
Please note that if you have more than one instance of Excel running, and you
quit one, Ersatz will become disconnected. Establish a new connection by
choosing ‘File|Connect to Excel’.

2. The Ersatz functions are not recognised by Excel (they show the #NAME?
error).

If you see this error on just a single or a few Ersatz functions, while other
Ersatz functions are fine, you most likely made a typo in the function name. If
you are unsure how a particular function name is spelled, use the Excel
function wizard: all Ersatz functions are available in the category ‘Ersatz’.
If all Ersatz functions show this error, and you are confident that they are
spelled correctly, most likely Ersatz is not properly (or not at all) installed.
Check whether the Ersatz add-in is listed and active (Excel 2003 and earlier:
Tools|Add-ins; Excel 2007: Office Button|Excel Options|Add-ins|Go). Make
sure the add-in is listed and the checkbox next to its name is checked.
If the add-in is not listed, you can try to use the ‘Browse’ button of the Excel
Add-in Manager to add it to the list, but most likely something went wrong
during installation (e.g. you had Excel running while installing Ersatz).
Remedy: quit Excel, and install Ersatz.

3. The Ersatz functions are recognised by Excel, but not correctly (they show the
#VALUE! error).

If you see this error on just a single or a few Ersatz functions, while other
Ersatz functions are fine, you most likely made an error in the number of
parameters the function takes. If you are unsure about the parameters of a
particular function, use the Excel function wizard: all Ersatz functions are
available in the category ‘Ersatz’.
Occasionally a workbook that was previously OK will all of a sudden return
these #VALUE! errors for all Ersatz functions. It seems that for some reason
on these occasions Excel unregisters the Ersatz functions. You can check for

Ersatz User Guide 65

this condition by using the Excel function wizard: if it lists the Ersatz
functions, but without their parameters (e.g. ‘ErNormal()’), this is what
happened.
Remedy: uncheck the Ersatz add-in in the Excel Add-in Manager (Excel 2003
and earlier: Tools|Add-ins; Excel 2007: Office Button|Excel Options|Add-
ins|Go) and click OK, and then open the Add-in Manager again check it again:
this will force Excel to register the Ersatz functions. If you then force a
recalulation of the workbook by entering a cell containing an Ersatz function
for editing and then hit ‘return’, the errors should go away.

4. An Ersatz function returns #NUM!.

You most likely made an error in the value of the parameters the function
takes. For example, if you enter ‘ErNormal(4,-1)’ you will get this error
because the standard deviation of the Normal distribution needs to be > 0. If
you are unsure about the values the parameters of a particular function can
take, use the Excel function wizard: all Ersatz functions are available in the
category ‘Ersatz’, and help is given on the parameter values they can take. Or
look up the function in the Ersatz Function Overview.

5. Ersatz runs but gives no output.

There are a number of situations where this will occur:

a. You forgot to put in ErOutput functions. The remedy is obvious.
b. You did put in ErOutput functions, but you do not feed them a valid

output value. For example, if you link the second parameter of the
ErOutput function to a cell containing text, this will happen. The
ErOutput function will, by the way, return #VALUE!.
Remedy: make sure you link the ErOutput functions to valid numerical
values.

c. You did put in ErOutput functions, but you have checked the ‘Multiple
Runs’ and ‘Use multiple run in/output functions’ checkboxes. When
you check these options, Ersatz expects ErRunOutput instead of
ErOutput functions.
Remedy: replace ErOutput with ErRunOutput functions.

d. You did put in ErRunOutput functions, but did not check the ‘Use
multiple run in/output functions’ checkbox.
Remedy: if you need ‘Multiple Runs’, check the the ‘Use multiple run
in/output functions’ checkbox. Otherwise replace the ErRunOutput by
ErOutput functions.

6. Ersatz used to run fine, but now all of a sudden requires me to apply for a
release code.

This may happen when you change the PC configuration, for example by
installing a new motherboard. Remedy: apply for a new release code.
This issue may also occur with illegal Windows software, see Known Issues.

Ersatz User Guide 66

Known issues

No software is without bugs, and that is undoubtedly true for Ersatz (and for Excel,
for that matter). Things can go wrong, and once they have done so, the software may
have become unstable and start to produce error messages whatever you do. In such
cases it is often advisable to quit the software altogether and start anew.
In particular, when Ersatz has given error messages like ‘Access violation’, ‘Invalid
floating point operation’, or ‘Range check error’, things have seriously gone wrong
and a restart is often required. If the problem is reproducible (i.e. if it occurs
predictably with some workbook and some calculation), I am very interested in
receiving a description of the problem (if it is not one listed below), if possible with a
copy of the offending workbook. Please send email to info@epigear.com.

1. The Partial Rank Correlation multivariate sensitivity option is not very robust
and can produce unhelpful error messages such as ‘Invalid floating point
operation’. At this point I don’t have a clue why this is (because I have not
looked into the problem). The Pearson, Spearman, and Kendall’s tau options
are robust. Currently not very high on the priority list.

2. Non-English Windows versions can cause problems. Some local versions of
Windows use a comma as decimal separator, and consequently expect a
semicolon instead of a comma as the separator of the parameters in the Ersatz
functions. No other issues are known at this point in time.

3. The copy-protection scheme of Ersatz gets thrown off (or, if you like, works
overtime) on at least one non-official (read: illegal) Windows version. Ersatz
will repeatedly think it is running on a new computer, and require you to
obtain a release code before it will run. Of course EpiGear will not provide
you with new release codes if this is your problem. And of course the remedy
is clear: get yourself a legal copy of Windows.

Ersatz User Guide 67

Technical appendix

Installation issues

A rant that can safely be skipped
Microsoft seems to delight in making things unnecessarily complex, and over the
years it has got pretty good at it. The general strategy seems to be to keep users as
much as possible in the dark about what is actually going on on their PCs.
Hence, for instance, such unhelpful default settings in Windows Explorer as
suppressing file extensions (with the consequence that you cannot distinguish between
an Access database and its lock file, for example) and showing large icons (which
take up maximum screen space while providing minimal information). Why keeping
users ignorant and thus helpless would be a good thing I’ll gladly leave to conspiracy
theorists.
One of the things Microsoft has come up with is that files should go in different
places, depending on their kind. So executables go in C:\Program Files, while related
data files and such go somewhere else, usually buried deeply in some C:\Documents
and Settings sub folder. It would seem much simpler and transparent to keep related
files in the same place.
With Windows Vista new heights of obfuscation have been reached. Vista actually
refuses to show whole directories, even when you have administrator rights. What’s
more, while in Windows XP and earlier the ideas of Microsoft about where files
should go could safely be ignored, Vista and later enforce these rules and software
that ignores them will not run correctly or at all. So whether I like it or not (and I
don’t), I’m forced to play along with Microsoft’s game of file hide and seek.

Where are your files?
After I’ve had my little rant, let’s get down to business. Installation is usually
painless, the most important thing to remember is that Excel should not be running
when you install Ersatz. If Excel is running, you will get an error message during
installation that the add-in could not be installed. Remedy: from now on read the
messages installation programs display, quit Excel and try again.
Once you’ve installed Ersatz, where are the files? This depends. For one thing, the
installation program gives you a choice. But even if you go with the defaults, it still
depends, in particular on the user rights you have on the PC. If you have administrator
rights, the Ersatz executable and xll add-in will go into Program Files, while the
example spreadsheets, temporary data files, and such go into a subdirectory of
Documents and Setting\All Users\Ersatz.
If you do not have the rights to install software on your PC, you nevertheless can
install Ersatz. Ersatz will then install all files under Documents and Setting\Your User
Name\Ersatz. In this case you may get the message during installation that “You may
have to install the add-in manually”. In practice this usually turns out to be not the
case: if you open one of the example spreadsheets and do not get #NAME? errors,
you’re fine. If you do get those errors, you will have to go to Tools|Add-ins (Excel
2003 and earlier) or Office Button|Excel Options|Add-ins|Go (Excel 2007) and
browse where the file ‘Ersatzdll.xll’ is located (now you know why it is important to
know where your files are).

Ersatz User Guide 68

To minimise the pain of finding the Ersatz files, all supplementary files
(documentation and examples) are accessible through the Start|Programs|Ersatz menu
that is created by the installation program, and from Ersatz’s Help menu.

A note to IT personnel
As described above, users can install Ersatz even when they have no administrator
rights. What is more, when you install Ersatz as administrator, other users may not be
able to use it. The reason is that the installation program writes to the Windows
registry key HKEY_LOCAL_USER, not to HKEY_LOCAL_MACHINE. There are
good reasons for that (which need not be elaborated here), but the upshot is that IT
should leave it to the users themselves to install the software, even on multiple user
machines in computer labs.

An unhelpful Excel offer
Sometimes Excel will offer to move the add-in file ‘Ersatzdll.xll’ to its ‘AddIns’
folder. Never, repeat never, accept this. If you do, it will cause all kinds of mischief,
in particular after upgrading to a newer version of Ersatz. It is one of those features of
Excel where you really wonder what they were thinking at Microsoft.
If you have already accepted the offer, here are the steps to undo the harm:

1. Go to the AddIns directory (you can find where it is by going through the
steps outlined in the previous section to manually add the add-in: when you
click the Browse button, Excel will start in the AddIn folder).

2. Delete the Ersatzdll.xll file. You cannot do so when Excel is running, so you
have to quit Excel first.

3. Start Excel. It will complain that it cannot find the Ersatz add-in, and ask you
whether it should be removed from its list. Click ‘yes’ to that.

4. Re-install Ersatz.
After having gone through this, you will probably remember to decline Excel’s offer
in the future ☺.

Software

Ersatz was developed in Object Pascal, using Borland’s Delphi 7 programming
environment for the 32-bit version, and Embarcadero’s Delphi XE2 for the 64-bit
version. While many people seem to think C++ is essential for this kind of project,
Object Pascal is actually just as powerful, easier to use, and beats all C++ compilers
by its blazing speed.
Writing xll add-ins for Excel has been described as a black art. While I would hesitate
to call it that, it certainly requires lots of stamina. The main reasons are that the
Microsoft Excel xll software development kits are rather short on detail, and that
Excel proves to be a wilful environment to program for, with a tendency to either
crash or sulk if anything is wrong rather than be explicit about it.
Fortunately, where Microsoft left a lot to be desired, some people have stepped in. I
am indebted to David Bolton whose article “Writing (Non Com) Excel Add-ins in
Delphi” (which originally appeared in Delphi Magazine but is now floating around on
the Web), despite some strange errors, gave me the necessary heads up in my first
steps on this road. An invaluable resource is also Steve Dalton’s “Financial
applications using Excel add-in development in C/C++” (Dalton 2007). But as the
title suggests, you need to be able to understand C(++) code to get the most out of this
book.

Ersatz User Guide 69

Excel 2007 is a major upgrade from previous versions. Among other things, it sports a
‘big grid’, i.e. many more rows and columns than previous versions. This required a
change in its basic data type, the XLOPER, to the XLOPER12. These special data
types have the flexibility to describe the different things Excel works with: text,
numbers, ranges, etc. Excel 2007 is largely backward compatible with add-ins written
for earlier versions, but Ersatz actively supports the new features of Excel 2007 and
higher by implementing a dual interface, and presenting the applicable one depending
on which version of Excel is running. A not yet supported feature of Excel 2007 and
higher is multi-threaded recalculation, which is planned for Ersatz version 2.0.
Few people will at this point have the 64-bit version of Excel 2010 and later installed:
the default installation of Office 2010 and later is still 32-bit. Starting with version
1.3, Ersatz is compatible with both 32- and 64-bit Excel. The installation program
contains two versions of the add-in, and installs the correct one depending on the
Excel version. The Ersatz executable is still 32-bit.
The Ersatz installation program was written using Inno Setup 5 (www.jrsoftware.org).
This is one of those amazing things: it is freeware, but beats commercial installation
software such as InstallShield hands down on features as ease of use, power, and
flexibility. Recommended.

Statistical and other scientific sources

There is a considerable number of scientific routines implemented in Ersatz. There are
of course the random number generators and the routines to produce random deviates
from specific distributions, but there are also lots of less visible supporting functions
to do sorting, indexing, matrix manipulations such as the Cholesky decomposition,
etc. There is a large and expanding literature on these matters. My general strategy is
to find a suitable publication, study the math and code (mostly Fortran or C) or
pseudo-code, and implement an Object Pascal version of it.
Most of the supporting functions are based on the venerable Numerical Recipes
(www.nr.com) (Press, Teukolsky et al. 1992; Press, Teukolsky et al. 2007). The
series, there are several editions, is one of those rare things: books on highly technical
and mathematical subjects that are also a good read.
Ersatz’s random number generators are all but one based on the Ultimate Random
Number Suite as programmed by Peter N Roth and Stefan Hoffmeister (which seems
to be no longer available). The one exception is the Mersenne twister, which is based
on the algorithm developed by Makoto Matsumoto and Takuji Nishimura (see
www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html).
The functions to obtain random deviates from specific distributions are from a number
of sources (and I have indicated in the Ersatz Function Overview for each function
what the source is). The canonical book here is the one by Luc Devroye
(http://cg.scs.carleton.ca/~luc/rnbookindex.html) (Devroye 1986), but I have also used
Numerical Recipes (Press, Teukolsky et al. 1992), Gentle (Gentle 2003), and Law &
Kelton (Law and Kelton 2000), and articles in specialised journals. Special mention
deserves Wikipedia, whose statistical pages have developed into a very useful
resource (see: http://en.wikipedia.org/wiki/Statistics).

Ersatz User Guide 70

Version history

This is a running list of the Ersatz versions, with the latest version first. You can
check which version you are running by choosing Help|About in the Ersatz
executable, or typing ‘=ErVersion()’ in an Excel spreadsheet cell15.

Ersatz version 1.35

February 2, 2017

A minor update: improvement in the user interface of the Conditional firing option.

Ersatz version 1.34

July 16, 2016

A minor update: a bug fix.
A bug surfaced in the Component functions in Excel 2013 and 2016 which made
Excel crash. Resolved.

Ersatz version 1.33

April 6, 2015

A minor update: a bug fix.
The rank correlation functions (ErRankCorr, ErDirichletCorr, and
ErMultinomialCorr) were not compatible with the Multiple runs option, and returned
the same stream of correlated random numbers for each of the multiple runs.
Resolved.

Ersatz version 1.32

February 26, 2015

A minor update: a bug fix.
A bug surfaced in Excel 2013 64 bit on Windows 8.1 which made Excel crash.
Resolved.

Ersatz version 1.31

October 25, 2012

A minor update: an additional function and two bug fixes.

Additional function:

ErSortedArray

Please consult the Ersatz Function Overview about this function.

Bug fixes:

1. A bug in ErDataArray could make Excel crash. Resolved.

2. With more than one ErCondRetrieveArray function in a workbook, retrieved

arrays could get mixed up. Resolved.

15 Note that both reported versions should always be in sync. If not, something has gone wrong while
updating Ersatz (e.g. you had Excel running while you were updating). See the User Guide section on
Installation Issues for further guidance.

Ersatz User Guide 71

Ersatz version 1.3

August 15, 2012

A major update: support for 64-bit Excel is added.

Ersatz version 1.2

April 26, 2012

An important update, with additional distributions, functions, functionality, and some
bug fixes.

Additional distributions:

1. Polya. Function name: ErPolya.

2. Four parameter, scaled Beta. Function name: ErBeta4.

3. Delaporte. Function name: ErDelaporte.

4. Correlated Dirichlet. Function names: ErDirichletCorr, ErDirichletCorrIn,

ErDirichletCorrOut.

5. Correlated multinomial. Function names: ErMultinomialCorr,

ErMultinomialCorrIn, ErMultinomialCorrOut.

Please consult the Ersatz Function Overview for details.

Additional functions:

1. ErData.

2. ErDataArray.

3. ErRunDataArray.

4. ErStore.

5. ErRetrieve.

6. ErStoreArray.

7. ErRetrieveArray.

8. ErCondStoreArray.

9. ErCondRetrieveArray.

Please consult the Ersatz Function Overview about these functions.

Additional functionality:

1. The Ersatz Help menu now has an entry ‘Example spreadsheets’ which allows

viewing and opening of the examples that come with the installation.

2. The Optimization after each iteration routine now has the option of running

the optimization after the first iteration only.

Bug fixes:

1. The histogram would sometimes cause an error when an output variable with

zero standard deviation was chosen. Resolved.

Ersatz User Guide 72

2. The scatter plot would throw an unintelligible error when no Ersatz input

functions were present in the spreadsheet. It now gives an informative error

message.

3. The correlation coefficient of the scatter plot would cause a ‘division by zero’

error when one of the variables had zero standard deviation. The correlation

coefficient is now ‘not available’.

4. In the Dirichlet function the parameters were incorrectly assumed to be

integers, they are now reals.

5. The multinomial function in some circumstances would produce too much

variability for categories with a small number. Resolved.

Ersatz version 1.13

March 5, 2011

A minor update, with some bug fixes.
1. The workshop version of Ersatz (only available on request) would sometimes

crash Excel when the Multivariate sensitivity output was chosen. Resolved.

2. The ErRankCorCom functions would return 0 instead of the mean value

during the stock taking of Ersatz functions that precedes each run. This could

cause a fatal error message if you had an ErOutput function that used the

ErRankCorCom function result such that a 0 value caused an error. Resolved.

3. The ‘Execute macro before iteration’ option sometimes would cause an error.

Resolved.

Ersatz version 1.12

September 16, 2010

A minor update, with a bug fix.
Some installations of Excel crashed when starting up with the Ersatzdll.xll file as an
active add-in. Resolved.

Ersatz version 1.11

January 31, 2010

A minor update, with some extensions of functionality and some bug fixes.
The complete list of changes:

1. The Distribution viewer has added a number of distributions, now a total of 26

distributions are available for exploration.

2. The Distribution viewer has an added message field to inform you when your

typed-in parameter values are invalid (could not be converted to a number or

are outside the defined range) or when these values raised a calculation error

(usually because of overflow: a value in the calculation exceeded the defined

range for that variable).

3. Sensitivity analysis was disabled when the Multiple run option was checked.

With ErRunSenseInput functions defining the input variables of interest in

your workbook, you can now do multivariate probabilistic sensitivity analysis

on these input variables, see the User Guide on Multiple runs for details.

4. Bug fixes:

Ersatz User Guide 73

a. In the Distribution viewer sometimes a discrete distribution graph

would be shifted one number to the right on the X-axis.

b. The Distribution viewer would throw all kinds of error messages for

some distributions and parameter values. These messages are now

intercepted, translated, and reported in the message field (see point 2

above).

Ersatz version 1.1

January 21, 2010

A major update, because of an important extension of the functionality: Ersatz now
has four optimization algorithms build-in. In addition there is a minor bug fix.
The complete list of changes:

1. Optimization is added, with four different algorithms: two deterministic

(Quasi-Newton and Down-hill Simplex) and two stochastic (Simulated

Annealing and Cross-Entropy). There are two added functions (ErMinimize

and ErMinimizeResult) to give access to the optimization algorithms, a large

added section on optimization in the User Guide, and two additional example

workbooks to illustrate their use.

2. Some of the functions that take Excel ranges as input (such as ErFixed and

ErEmpirical) could not handle correctly an input range consisting of a single

row. This bug was introduced in version 1.01, and has now been fixed.

Ersatz version 1.01

October 10, 2009

This is the first version of Ersatz without the ‘beta’ qualification, so the first ‘official’
release. It is also a major upgrade from version 1.0 (beta), although many of the
changes are under the hood and users (in particular of Excel 2003 and earlier) should
hardly notice.
The main change is that Ersatz now actively supports Excel 2007. The previous
version relied on the backward compatibility of Excel 2007, but this version has a
dual interface and, after querying which Excel version is running, presents the
appropriate one. This required a major revision of the Ersatz plumbing, and my
expectation is that an added benefit will be greater stability, in all supported versions
of Excel.
Here is the complete list of changes:

1. Active support of Excel 2007 new features, in particular the ‘big grid’. The

issue that 2007 users could not run Excel macros from Ersatz has been

resolved as well. However, multi-threaded recalculation will have to wait until

version 2.0.

2. The Excel function wizard now displays help texts on the Ersatz functions and

the parameters they take. If you do not know what the ‘Excel function wizard’

is, check it out in the Excel Help: it is really useful. Unfortunately, Excel does

not support ‘tool tips’ for user defined (that is: not innate Excel) functions.

3. The documentation is now complete. In particular, the Ersatz User Guide has

sections on Error messages, Trouble shooting, Known issues, and a Technical

Ersatz User Guide 74

appendix with a detailed discussion of installation issues, among other things.

This should be your first port of call if things go wrong (or seem to).

4. Some functions that take Excel ranges as a parameter (such as ErFixed) were

limited to a maximum range size of 8192 cells. This limit has been lifted.

5. The Bernoulli distribution has been added (function name: ErBernoulli).

Ersatz User Guide 75

About the author

Jan Barendregt is the founder and owner of EpiGear International Pty Ltd, Sunrise
Beach, Queensland, Australia (www.epigear.com). Epigear makes free and low-cost
software and provides consultancy services. Email: jan@epigear.com.
Previous positions were at Erasmus University, Netherlands, WHO Geneva, and
University of Queensland, Australia.

Ersatz User Guide 76

References

Barendregt, J. J. (2010). "The effect size in uncertainty analysis." Value in Health

13(4): 388-391.
Barendregt, J. J. and A. Blakely (Draft). "On the choice of distributions in

probabilistic bias analysis."
Briggs, A., M. Sculpher, et al. (1994). "Uncertainty in the economic evaluation of

health care technologies: the role of sensitivity analysis." Health Econ 2(3):
95-104.

Briggs, A., M. Sculpher, et al. (2006). Decision Modelling for Health Economic
Evaluation. Oxford, Oxford University Press.

Conover, W. J. (1999). Practical Nonparametric Statistics. New York, John Wiley &
Sons.

Dalton, S. (2007). Financial Applications Using Excel Add-in Development in
C/C++. Chichester, Wiley.

Devroye, L. (1986). Non-uniform random variate generation. New York, Springer
Verlag.

Fox, M. P., T. L. Lash, et al. (2005). "A method to automate probabilistic sensitivity
analyses of misclassified binary variables." International Journal of
Epidemiology 34: 1370–1376.

Gartner, C. E., J. J. Barendregt, et al. (2009). "Predicting the future prevalence of
cigarette smoking in Australia: how low can we go and by when?" Tob
Control 18: 183-189.

Gelman, A., J. B. Carlin, et al. (2004). Bayesian data analysis. Boca Raton, Chapman
& Hall/CRC.

Gentle, J. E. (2003). Random number generation and Monte Carlo methods. New
York, Springer.

Law and Kelton (2000). Simulation analysis.
Marsaglia, G. and A. Zaman (1991). "A New Class of Random Number Generators."

Annals of Applied Probability 3(3): 462-480.
Press, W. H., S. A. Teukolsky , et al. (1992). Numerical Recipes in FORTRAN 77:

The Art of Scientific Computing. Cambridge, Cambridge University press.
Press, W. H., S. A. Teukolsky , et al. (2007). Numerical Recipes: The Art of Scientific

Computing. Cambridge, Cambridge University press.
Rubinstein, R. Y. and D. P. Kroese (2008). Simulation and the Monte Carlo method.

Hoboken, Wiley.

