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Introduction 

Monte Carlo Simulation in Excel 

Ersatz is a tool for Monte Carlo simulation in Microsoft Excel. It extends Excel with a 
range of functions that offer statistical distributions, the ability to draw randomly from 
these distributions, and repeat this a large number of times while gathering results in 
output functions. Applications include uncertainty analysis (aka ‘risk analysis’, and 
‘probabilistic sensitivity analysis’), microsimulation, bootstrapping, and probabilistic 
bias quantification. Ersatz is a generic tool, but offers some special functions that 
reveal its origin in health economic modelling. A list of the available Ersatz functions 
is in the Ersatz Function Overview document. 

Installation 

Ersatz 1.3 has been tested with Excel 2000, 2003, 2007, 2010, 2013, and 20161. 
Installation is usually straightforward: make sure Excel is not running, and run the 
ErsatzSetup executable. If all goes well, the functions will be visible in the Excel 
Function Wizard (in the function category ‘Ersatz’) and you can open the example 
spreadsheets without seeing any “#NAME?” errors. See the section on ‘Trouble 
shooting’ when this is not the case. 
The installation program installs an Excel add-in (called ‘ersatzdll.xll’) and an 
executable (called ‘Ersatz.exe’), together with some documentation files and a few 
example spreadsheets. These items are accessible through the Windows Start menu, 
together with an Uninstall option. For a detailed discussion of the installation issues, 
see the Technical Appendix below. 

Registration and license 

In most cases you will need to obtain a license number and release code to be able to 
run Ersatz2. When you try to run Ersatz for the first time after installation it will show 
its Registration form, where you must enter a valid license number and a machine 
specific release code. 
A license number will be issued to you after payment has been received, see the 
website (www.epigear.com) for payment options. Generally, the license is a personal 
one: you are granted the right to use Ersatz. When you use more than one PC, you 
have the right to run Ersatz on all of them. However, for each PC you will need to 
apply for a different release code. To obtain a release code, send your license number 
and the machine ID reported by Ersatz to ErsatzReg@epigear.com (please use copy & 
paste for the machine ID to avoid typos), we will respond as soon as possible.  
Please contact Epigear (info@epigear.com) if you need a different license 
arrangement.  

Features 

Ersatz has a number of special features: 
1. Multiple run mode. 
2. An option to execute Excel macros before and after each iteration and run. 

                                                 
1 Ersatz 1.3 actively supports the new features of Excel 2007 and higher. Ersatz supports both the 32-
bit and 64-bit versions of Excel 2010 and higher. Please note that Ersatz is not compatible with the 
cloud-based Office 365 service. 
2 A license number and release code are not needed for the Trial and Workshop versions of Ersatz. 
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3. Conditional firing of the Ersatz random functions. 
4. Several options for sensitivity analysis. 
5. Special functions for microsimulation, in particular discrete event simulation. 
6. A distribution viewer. 
7. A choice of seven different random number generators. 
8. Correlated random numbers, including for the multivariate Dirichlet and 

multinomial distributions. 
9. Four different optimization algorithms, two deterministic and two stochastic. 

These features are discussed in sections below. 

Design issues 

As mentioned above, Ersatz originates from a background of health economic 
modelling. It has been developed with academic research in mind. This implies that 1) 
transparency of the methods used is deemed important, and 2) rigour in the 
application of those methods is also important. 
The issue of transparency hinges on the documentation. I’ve aimed to reference all the 
algorithms used, but it is very well possible that some are not referenced yet: the 
documentation tends to lag behind the implementation. Please bear with me. 
As for rigour: Ersatz has been designed to be rather demanding in its inputs. For 
example, when the parameters of a distribution are outside their defined range, the 
function will return #NUM, and no summary statistics such as mean and standard 
deviation will be calculated, even if this happens in only a single instance of many 
iterations. The justification of that is that if such a thing happens, there is a design 
flaw in the modelling, and it is better to be confronted with that than to rely 
unwittingly on outcomes that may be flawed. 
Another design issue is the interface. Ersatz does not attempt to melt into Excel, but is 
clearly a stand-alone application. In addition, the interface has been kept very simple 
(and therefore, hopefully, easy to navigate). These choices reflect my own 
preferences, which other people may not share. 

Operation 

Running Ersatz is done using the Ersatz executable (and not from within Excel). To 
operate, start Excel, and populate the spreadsheet with at least one input random 
function, and at least one ErOutput function (see the Ersatz Function Overview 
document for the parameters these functions take, or use the Excel Function Wizard). 
When done, start Ersatz, which will automatically connect to the running Excel 
spreadsheet (it will show the name of the spreadsheet in the titlebar). Then just press 
the ‘Calculate’ button for a default of 1000 iterations. When Ersatz has finished, 
additional tabs will become visible with ‘Summary output’ in table form, and 
histograms.  
Clicking the check boxes in the Ersatz area of the Setting tab with ‘Complete output’ 
etc will reveal additional tabs with the corresponding data in tables. Results can be 
saved to file by choosing ‘File|Save results’, and can be saved to the clipboard (and 
then pasted into, for example, Excel) by choosing ‘Options|Copy to clipboard’, right 
clicking and choosing ‘Copy’, or simply by using the short-cut Ctrl C on the currently 
visible table or graph. 
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Iterations and runs  

Ersatz distinguishes ‘iterations’ and ‘runs’. An iteration is a single recalculation of the 
Excel spreadsheet, using randomly drawn values from the input distributions. A run 
consists of a large number of iterations (typically at least 2000), and Ersatz collects all 
outcomes during the run and calculates for each outcome summary statistics such as 
mean, standard deviation, and CI. When the ‘Multiple runs’ option is chosen, this 
process is repeated as many times as the user specifies. For a detailed discussion of 
this option and its uses see the topic on ‘Multiple runs’. 

This User Guide 

Although in the remainder I will touch briefly upon the concepts of uncertainty 
analysis, bootstrapping, and microsimulation, this User Guide is certainly not meant 
as an introduction to these issues. The reader is kindly referred to the literature, see 
the references for some examples. 
The aim of this document is to make the user familiar with Ersatz and its interface, 
possibilities, and quirks. 

Technical note 

Please consult the Technical Appendix below for statistical and other technical 
details. 
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Interface and features 

Introduction 

In this section I will describe the Ersatz interface, and simultaneously explain the 
various features the interface refers to. Controlling Ersatz happens through three 
interface elements: the ‘Settings tab’, the ‘Calculation panel’, and the ‘Main menu’. I 
will describe these elements in turn. 

Settings tab 

The Settings tab has two main areas: an Excel and an Ersatz area. In the Excel area 
the following check boxes are placed: 

1. No screen updates while running. If checked this suppresses the Excel 
screen updates after each recalculation. This greatly speeds up the calculation. 
Default value is checked. 

2. Show mean values while not running. If checked Excel will show the mean 
values of the Ersatz distribution functions in the spreadsheet, if unchecked the 
functions will return a random value drawn from the distributions (and you 
can draw new values manually by letting Excel recalculate the sheet through 
pressing F9). Default value is checked. 

3. Check for errors while running. If checked Ersatz will for each iteration test 
whether the input parameters of the random functions comply with 
requirements, if not the function will produce #NUM and a non-fatal error 
message will be posted to the Message window. If not checked, this test will 
not be performed, and if the parameters are outside the required range it is 
unpredictable what the function will return. It is therefore strongly 
recommended to have this option on at all times, the performance penalty is 
not noticable. Default value is checked. 

 
In the Ersatz area the following items are visible: 

1. Confidence intervals (%). You can choose confidence interval values 
between 50 and 99%. Default is 95%. 

2. Number of decimals in tables. This controls the number of decimals in the 
output tables. You can set values from 0 to 10. Default is 3. Please note that 
this setting does not affect the number decimals in tables saved or pasted: in 
that case a high precision is maintained. 

3. Show scattergrams. If checked Ersatz will display scattergrams of inputs and 
outputs on the ‘Scattergrams’ tab. Default value is unchecked. 

4. Show complete output. If checked Ersatz will display the values of each 
output function for each iteration in a table on the ‘Complete output’ tab. 
Default value is unchecked. 

5. Show sorted output. If checked Ersatz will display all values of each output 
function sorted from lowest to highest value in a table on the ‘Sorted output’ 
tab. Default value is unchecked. 

6. Show input. If checked Ersatz will display the values of each input function 
for each iteration in a table on the ‘Input’ tab. Default value is unchecked. 

7. Show convergence graphs. If checked Ersatz will display the running mean 
value of each output function for each iteration ‘Convergence’ tab. Default 
value is unchecked. 
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8. Multiple runs. If checked on the calculation panel an additional box is visible 
that allows to set the number of runs. At the same time the options ‘Show 
complete output’, ‘Show sorted output’, and ‘Show input’ become 
unavailable, while the ‘Multiple run output mode’ checkbox becomes enabled. 
The output and input options are disabled because they can easily become very 
big indeed with multiple runs. But complete input and output can be saved to 
file, and therefore is still available. For a detailed discussion of this option and 
its uses see the topic on ‘Multiple runs’. Default value is unchecked. 

9. Multiple run output mode. This checkbox is enabled only when the 
‘Multiple runs’ box is checked. For a detailed discussion of this option and its 
uses see the topic on ‘Multiple runs’. Default value is unchecked. 

10. Optimization. If checked, this will open the Optimization tab, which allows 
access to Ersatz’s four optimization methods and their options. For a detailed 
discussion of optimization, the four methods and their options, see the section 
on ‘Optimization’ below. Default value is unchecked. 

 
This concludes the ‘Settings tab’ section. 

Calculation panel 

The calculation panel is the panel on the left of the main window, displaying the 
Ersatz logo. In addition it contains usually two, and occasionally three items, 
depending on whether the ‘Multiple runs’ option is chosen.  
The calculation panel allows to specify the number of iterations and runs, and to start 
the calculation: 

1. Calculation. This button starts the calculation, and allows to cancel it when it 
has started. 

2. Number of iterations. This box allows to specify the number of iterations in 
each run. The default value is 1000 (but this is not the recommended value for 
uncertainty analysis, see the topic ‘How much is enough?’). The box also 
contains an indicator that allows to monitor calculation progress. 

3. Number of runs. This box is visible only when the ‘Multiple runs’ option on 
the Settings tab is chosen. Otherwise it is analogous to the ‘Number of 
iterations’ box, including a progress indicator. 

 
This concludes the ‘Calculation panel’ section. 

The Main menu 

The Main menu is located just below the title bar of the main Ersatz window. It has 
four items (File, Options, View, and Help), each with several sub-items. First the 
‘File’ item: 

1. File|Connect to Excel. This item is disabled when Ersatz is connected to an 
Excel workbook. When the connection is lost, for example because you closed 
the workbook, it will become enabled and lets you connect again. 

2. File|Disconnect Excel. This item is enabled only when Ersatz is connected to 
an Excel workbook. When chosen, Ersatz will disconnect and disable many 
options such as the Calculation button. 

3. File|Save results. This item is enabled only when results are available after 
the calculation. When chosen it opens the ‘Save results’ window, which 
allows you to save complete inputs and outputs, and summary outputs, each in 
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a separate file. Check the items you want to save, specify valid file names (use 
the Browse buttons for that), and click the Save button when done. 
Note that when multiple runs have been calculated each iteration will be 
prefixed with the run number. The file format is comma-delimited (with 
extension ‘csv’): this format can be read by Excel and most statistical 
packages. 

4. File|Exit. This exits Ersatz. 
 
The following sub-items are located in the ‘Options’ item: 

1. Options|RNG. RNG stands for ‘random number generator’. Ersatz uses its 
own RNGs, and offers the user a choice of 7 different generators, which are 
shown in the ‘RNG options’ window. For details, see the topic on Random 
numbers. 

2. Options|Macros. Ersatz allows to run Excel macros during execution. Please 
note that this will, as a rule, considerably slow down the calculation speed. 
Choosing this option will open the ‘Macros’ window for the specification of 
the macros and further options. See the topic on Macros for details. 

3. Options|Miscellaneous. Here you can set various options: 
a) The maximum number of times that the ErTruncate function will resample 
the embedded random function to obtain a number that falls within the limits. 
The default number is 10. 
b) Whether or not Ersatz should use short cell addresses in its Sensitivity 
graphs. The default is yes. 
c) Whether or not Ersatz should use the ErSetItno function. Default is yes. 
See the Ersatz Function Overview for details on these functions.  

4. Options|Conditional firing. Normally Ersatz functions are triggered on every 
iteration. Choosing this option will open the ‘Condional firing’ window, where 
you can change the default behaviour by input function. Note that for this 
condition to take hold the ‘Conditional firing on’ checkbox has to be checked. 
For details, see the topic on Conditional firing. 

5. Options|Copy to clipboard. This option is enabled when one of the output or 
input grids or graphs is visible. Choosing this option will copy the grid or 
graph to the clipboard, from where it can be pasted into other applications, 
such as Excel and Word. It is also available by right-clicking the grid or graph. 

6. Options|Graph options . This option allows to change the appearance of the 
current graph. It is also available by right-clicking the graph. 

7. Options|Correlation. Chosing this item will open the ‘Correlation’ window. 
See the topic on ‘Correlated random deviates’ for details. 

 
The ‘Sensitivity’ item contains two sub-items: 

1. Sensitivity|Univariate. This opens the univariate sensitivity window. Please 
note that results from a run will be destroyed by this action. 

2. Sensitivity|Multivariate. This opens the multivariate sensitivity window. 
Please note that results from a run have to be available for this option to be 
enabled. 

See the topic on ‘Sensitivity and uncertainty analysis’ for details on these sensitivity 
options. 
 
The ‘View’ item contains the following sub-items: 
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1. View|Distributions. This item opens the Ersatz Distribution viewer, a window 
where the user can choose from the list of distributions implemented in Ersatz 
functions, get a graphical representation, and change parameters to examine 
the effect on the distribution. The window also displays the corresponding 
mean and standard deviation. 

2. View|Messages. This opens the Messages window, which displays some run 
statistics, such as numbers of inputs and outputs, length of calculation time, 
etc. It also displays error messages. 

 
The ‘Help’ item has the following sub-items: 

1. Help|Ersatz User Guide. Displays this document in a window. 
2. Help|Ersatz Function Overview. Displays the Ersatz Function Overview 

document, which lists all Ersatz functions and details the parameters. 
3. Help|Example spreadsheets. Displays and allows to open the example 

spreadsheets that come with the installation. 
4. Help|About. Displays the About box, with details of the Ersatz version and 

serial number (if applicable). 
 
This concludes the ‘Main menu’ section. 
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Special topics 

Introduction 

In this Special Topics section I will briefly touch on some general concepts in the 
field of modelling and uncertainty analysis, but focus on the features of Ersatz that 
relate to these concepts. Subjects are: 
 

1. Bootstrapping and Monte Carlo Simulation 
2. Microsimulation 
3. Random numbers 
4. Uncertainty and sensitivity 
5. Good modelling practice 
6. Multiple runs 
7. Macros 
8. Conditional firing 
9. Optimization 

 
The aim of this section is to give some background to the various features of Ersatz, 
including references to the literature, and help the user to make full and appropriate 
use of these features. 
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Bootstrapping and Monte Carlo Simulation 

Numerical methods 

Uncertainty analysis aims to quantify the uncertainty around a central (or point) result 
by, for example, giving a confidence interval around that central result. For instance, 
an incremental cost-effectiveness ratio (ICER) from an economic evaluation study 
might be assessed at $34,000 per quality adjusted life year (QALY), with a 95% 
confidence interval (CI95) of $28,000 to $41,500. The CI95 expresses that, given the 
data, we expect 95% of all possible outcomes to fall within this range3. 
A caveat is due here: with an uncertainty analysis we usually limit ourselves to the 
uncertainty due to the sampling error of the input data. Other sources of uncertainty 
are explored, if at all, using different methods. 
For parametric distributions it can be quite easy to calculate a CI. For example, the 
CI95 of a variable with a Normal distribution with parameters μ and σ is given by μ ± 
1.96 σ. However, an ICER has several sources of sampling uncertainty: the 
uncertainty around the effect size of the intervention, uncertainty around the costs, 
and perhaps several more, and it then becomes impossible to find an analytical 
expression to calculate a CI. 
Enter Monte Carlo simulation and bootstrapping. These methods use numerical (as 
opposed to analytical) methods to obtain an estimate of the uncertainty. They rely on 
re-sampling to obtain a distribution of outcomes, from which the standard deviation 
and a CI are derived. These two main variants of numerical methods are both 
supported by Ersatz. 

Non-parametric bootstrapping 

Non-parametric bootstrapping requires a dataset on the individual record level. From 
this dataset a bootstrap replicate of the same size is constructed by randomly drawing 
records from the dataset with replacement. This implies that some records will be 
present more than once, while others will not be present at all. From this bootstrap 
replicate the outcome of interest is calculated. This procedure is repeated many times, 
resulting in a distribution of outcomes. 
Non-parametric bootstrapping has the big advantage that no assumptions on the 
distribution of the data have to be made. This makes it particularly useful when such 
assumptions become rather heroic. For large datasets the central limit theorem assures 
that the assumption of normally distributed statistics like the mean is close enough, 
but for small datasets this assumption often stretches credibility. 
Ersatz has implemented non-parametric bootstrapping through the ErNonparam and 
ErNonparamCom functions, see the Ersatz Function Overview document for details. 

Monte Carlo Simulation 

Monte Carlo simulation (sometimes also called ‘parametric bootstrapping’) does not 
require individual record level data, but it does require you to make assumptions on 
the distributions of the variables in the model. Once all appropriate variables have 
been replaced by suitable distribution functions (including suitable parameters), the 

                                                 
3 I know, from a frequentist’s point of view this is not correct. However, uncertainty analysis is in 
many respects closer to the Bayesian approach to uncertainty, and within the Bayesian framework it is 
a valid statement. 
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model is re-calculated many times, each time drawing a random value from each of 
the distribution functions, again resulting in a distribution of outcomes. 
The main issue with Monte Carlo Simulation is the choice of suitable distributions 
and parameters. Sometimes the choice is obvious (e.g. average height from a large 
population survey has a Normal distribution), sometimes almost by definition (e.g. 
Binomial and Multinomial and their conjugate Beta and Dirichlet distributions for 
categorical variables), but inevitably sometimes a rather subjective choice must be 
made. For a discussion on the choice of distributions and the estimation of parameters 
in the context of health economic evaluation, see the section on Good Modelling 
Practice below, and the book by Briggs et al (Briggs, Sculpher et al. 2006). 
Ersatz has a whole range of distributions for Monte Carlo Simulation, see the Ersatz 

Function Overview document for the list of functions. 

Combined parametric and non-parametric models 

Ersatz allows mixed models, with some parameters described by parametric 
distribution functions, while others get their value from a non-parametric bootstrap. 

How much is enough? 

How many iterations should you use? A good question, and the answer is ‘it depends’. 
It depends on your model, the outcome statistic you are interested in, and on your own 
preferences. Generally speaking, the number of iterations is enough when repeated 
runs of your model with that particular number of iterations generate results that are 
sufficiently similar. 
Note the subjectivity in ‘sufficiently similar’. When you are interested in central 
statistics such as the mean, you can for most models get away with less than 1000 
iterations. However, when you are interested in confidence intervals, you will 
generally need more than that, because confidence intervals are derived from the 
infrequent samples from the extremes of the distributions. 
Ersatz offers a convergence graph to let you inspect the stability of the outcome 
variables. This graph shows the running mean by iteration. Typically at the lower end 
of the number of iterations this running mean shows large volatility, that decreases 
towards the higher iterations end of the graph. Your model outcomes have converged 
on their mean value when the right part of the convergence graph is virtually a 
straight horizontal line. 
As a general rule I recommend not to skimp on the number of iterations. Of course 
calculation time can become an issue, but for most models on today’s PCs the issue is 
minor. 
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Microsimulation 

Introduction 

In the discussion of bootstrapping above it was implicitly assumed that the model 
describes a population. Parameters, such as the risk of disease, are assumed to be 
equally applicable to all members of the population. When this assumption is 
obviously not met, the standard response is to subdivide the population, for example 
by age and sex, such that within the subpopulations the assumption of homogeneity is 
reasonable. 
Subdividing the population to accommodate heterogeneity works, up to a point. It 
may be self-defeating when the number of subdivisions is so large that the model 
becomes unwieldy. This can easily happen with models describing various risk factors 
with several levels of exposure and time-dependent risks, for instance.  
Another example of an area of research where subdividing the population is only a 
partial solution is that of cancer screening models, where much of the evaluation of a 
screening program is determined by the degree of heterogeneity that the model 
allows. In such cases, microsimulation may be the best option. 

Individual level models 

Microsimulation is a technique where the unit of simulation is the individual. The 
model describes an individual life history using probabilistic functions. An instance of 
a life history is created by drawing randomly from these distributions. Population 
level outcomes are obtained by creating many of these life histories, and deriving the 
desired outcomes, such as disease prevalence, from the individual level simulated 
data. 
It will be clear that accommodating heterogeneity should be no problem in such 
individual level modelling. What may not be obvious is that microsimulation usually 
is very computationally intensive. To obtain reasonably stable population level 
outputs often a very large number of individual life histories needs to be created. In 
addition, microsimulation is generally more demanding in data requirements: to 
model heterogeneity requires data on heterogeneity. These drawbacks make 
microsimulation an option that needs careful consideration. 

Microsimulation and Excel 

Given the tendency of microsimulation to be computationally intensive, Excel is 
hardly the ideal environment for this technique. Microsimulation models are often 
written in general purpose compiled programming languages, such as Object Pascal 
and C++, that produce optimised executables. However, programming in such 
languages requires special tools, specific expertise, and usually a large effort. 
Therefore microsimulation in Excel may be an attractive alternative. 
When you go down that road, model efficiency should be foremost in your mind. A 
well designed model may run several times faster than a poorly designed one, and that 
becomes important when run times are counted in hours rather than seconds. 
An example will illustrate this. One of the returning issues in disease modelling is to 
assess an age at death, given age-specific conditional mortality probabilities such as 
routinely published by national statistical bureaus. In a discrete single-year time/age 
approach this can be done by drawing for each age a uniformly distributed number 
between 0 and 1, and assess whether it is smaller than or equal to the mortality 
probability of that age. The youngest age for which this is true then becomes the age 
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at death. If your model considers ages from 0-100, this requires 101 random draws 
and comparisons (see example workbook ‘survival123’, spreadsheet ‘survival1’). 
While this works, it is not efficient. An about twice as fast way of obtaining the same 
result requires the mortality probabilities to be converted to a survival curve, and then 
use a single random uniformly distributed number between 0 and 1 together with the 
Excel INDEX and MATCH functions to look up this value in the survival curve (see 
example workbook ‘survival123’, spreadsheet ‘survival2’). The same technique can 
be used to determine age at disease incidence and other empirical data driven time-to-
state-transition model variables. 

Microsimulation and Ersatz 

Using survival curves improves performance, but the implementation in ‘survival2’ is 
still not ideal. The main problem is that time is treated as a discrete variable, which of 
course it is not. In ‘survival2’ (as in ‘survival1’) it is assumed that death occurs half 
way through the age interval (the ‘0.5’ in the formulas), which is reasonable enough 
on the population, but less so on the individual level. Moreover, it is not clear what to 
do when more than one cause of death can occur in the age interval (say, a disease 
specific and an ‘all other’ causes death). This so-called ‘competing risks’ problem is 
introduced by treating time/age as a discrete variable. 
A better design choice is therefore to use a continuous time, discrete event approach 
instead of the perhaps more intuitive discrete time one. Briefly, in continuous time, 
discrete event modelling everything that happens is called an ‘event’, and each event 
has an exact time linked to it. The model proceeds from one event to the next (see for 
example (Law and Kelton 2000) for an introduction to discrete event modelling). This 
is elegant because it solves the competing risks problem and is efficient at the same 
time. 
Ersatz has of course the continuous parametric distributions that are well suited to this 
kind of modelling, but it also implements a continuous empirical survival function, 
ErSurvival. This function takes conditional failure probabilities by discrete time as 
parameters, and returns a continuous survival time (see the Ersatz Function Overview 
for details). ErSurvival also takes a parameter that allows it to return survival time, 
conditional on having survived so far. The ‘survival3’ sheet in workbook 
‘survival123’ has an implementation of ErSurvival that is equivalent to the survival1 
& 2 worksheets, but then in continuous time. 
Other Ersatz features that come in handy for microsimulation are ‘Multiple runs’ and 
the ErRunOutput, ErIteration, and ErConditional functions. When doing population 
level modelling an iteration stands for a recalculation of the entire population, given a 
random draw from uncertain parameters such as effect size. A ‘run’ consists of a 
large, say 2000, number of iterations, with the effect of uncertainty in the parameters 
reflected in the distribution of outcomes. 
When doing individual level modelling (microsimulation) an iteration stands for an 
individual, and a ‘run’ is the equivalent of doing a single iteration in a population 
level model. Consequently, to do an assessment equivalent to a population level 
analysis with 2000 iterations, in microsimulation you will have to do 2000 runs with 
each a number of iterations equal to the population size you deem proper (here is 
where microsimulation truly becomes computationally intensive).  
And with a microsimulation run equivalent to a population level iteration, it is also 
clear that you want a single draw from uncertain parameters such as effect size to 
apply all individuals in your population (= a microsimulation run). In other words, in 
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microsimulation you have to do uncertainty analysis by doing multiple runs, with 
some individual level functions (such as ErSurvival) drawing a random value at each 
iteration, while population level functions (such as ErRelativeRisk for effect size) 
draw a random value only once for each run. 
Ersatz offers the tools to implement this. See the topic on Useful functions for 

multiple runs in the section on Multiple runs below and the Ersatz Function Overview 
for details. 

Combating randomness in microsimulation 

Health economic evaluation is all about comparing a specific intervention with a 
comparator that is in all respects the same except for that intervention. As such it is 
using the same design as a randomised controlled trial (RCT), the only difference 
being that in addition to measuring the health outcomes in each arm it is also 
measuring the costs. 
In an RCT an important issue is to make the subjects in the intervention and control 
arms as comparable as possible. To that end a study population is selected that is 
similar in all attributes that can be measured, and randomisation is used to control for 
chance (or, equivalently, for attributes that cannot be measured). Ideally you would 
like to have each subject to act as its own control, but apart from the limited 
applicability of cross-over designs this ideal cannot be reached in practice (and even 
then!). 
A microsimulation model mimicking an RCT that compares disease survival with and 
without some drug, for example, would simulate life histories in both arms by 
randomly drawing ages at incidence, deaths from all other causes, and disease 
survival. The difference between the arms would originate from drug induced 
systematic differences in the survival, and all chance differences due to the random 
draws. 
We are, however, trying to evaluate the drug induced systematic difference only, all 
the other random differences are just muddling the picture (or, to put it more 
precisely, increasing variance).  
While this is inevitable in RCTs, it is avoidable in microsimulation modelling. In 
microsimulation it is possible to make life histories the same between arms in every 
respect except the survival. A single draw determines age at incidence, and another 
single draw age at death from all other causes in both arms. To avoid random 
difference in the survival Ersatz implements a variant of the ErSurvival function 
(called ErSurvival2) that takes as an additional parameter a uniformly distributed 
number between 0 and 1. This allows to apply the same random draw to two different 
survival functions. 
Such a set up makes, at least in the microsimulation model, subjects act as their own 
controls, thereby greatly reducing variance (and increasing precision). In the example 
workbook BreastCa the two cases are compared. This workbook implements the 

survival effect of trastuzumab (Herceptin) for her2-positive women as compared to  
standard therapy survival.  
In worksheet Breastca1 the two arms have independently drawn ages at incidence, all 
other causes death, and survival after breast cancer incidence. In the BreastCa2 
worksheet the two arms are identical in all these respects except for the survival effect 
of tratuzumab. The standard deviation of the survival difference is reduced from about 
13.5 to 1, the 95% uncertainty interval from about –26..+30 to 0..3. A huge reduction 
in uncertainty.  
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Microsimulation is a very powerful technique but is has clear drawbacks as well, and 
the inherent (so-called “first order”) randomness is one of them. Clever design, 
however, can greatly reduce this first order randomness. An additional technique to 
reduce it, so-called “common random numbers” is discussed in the next section on 
random numbers. 
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Random numbers 

Introduction 

Bootstrapping and microsimulation depend on random numbers: the model uses 
distributions to describe crucial variables, and a particular outcome is calculated using 
specific values for these variables that are drawn randomly from the distributions. 
This implies, by the way, that the outcome of the model is a random variable as well. 
While this is the purpose of an uncertainty analysis, because it allows you to quantify 
the uncertainty of that outcome, it can also be a real nuisance.  
When, for example, you assess the health and cost outcomes of a particular medical 
intervention by comparing model outcomes with and without the intervention, you 
don’t want this comparison to be confounded by the randomness of that outcome. And 
fitting a random model to observations can be a pain too. 
The usual response to combat the randomness of the model outcome is to increase the 
number of iterations, but this has of course the drawback of increasing calculation 
time. Another response is to use ‘common random numbers’, see the section on this 
topic below. 
Computer programs can produce random numbers using algorithms called ‘random 
number generators’ (RNGs), and Ersatz offers the choice of seven different ones.  

Random number generators 

An ‘algorithm that produces random numbers’ is of course an oxymoron: a 
deterministic process (an algorithm) cannot produce random numbers. The outcome 
of a RNG is therefore more correctly described as ‘pseudo random numbers’: 
something that looks like random numbers, but isn’t. An important property of a RNG 
is how well the pseudo random numbers resemble the real thing. 
The basic operation of a RNG is as follows. Each RNG produces a large but fixed 
number of fixed ‘random’ numbers in a fixed sequence. The large number is called 
‘the cycle length’ or ‘period’. A ‘seed number’ is used to determine where in this 
cycle the RNG will start to generate a stream of ‘random’ numbers. When the 
requested number of ‘random’ numbers is larger than the cycle length the RNG 
simply restarts at its entry point. 
From this discussion it will be clear that a RNG produces anything but random 
numbers. It will also be clear that the cycle length is an important property of a RNG: 
longer cycle lengths are preferred. 
So there are two main characteristics that determine the quality of a RNG: its 
statistical properties (how well do the numbers resemble random numbers) and its 
cycle length. High quality RNGs have good statistical properties and a long cycle. 
Unfortunately, there is a trade-off: high quality RNGs require as a rule more 
computational effort than low quality ones. The build-in RNG of Excel (accessible 
through the RAND() function) prior to version 2003 was not very good; with version 
2003 and later a better algorithm (based on Wichman & Hill) has been implemented. 
Ersatz uses its own RNGs and therefore can offer the user a choice how to trade off 
speed against quality.  

The Ersatz RNGs 

Ersatz has seven build-in RNGs, mostly based on the Ultimate Random Number Suite 
as programmed by Peter N Roth and Stefan Hoffmeister (and the following text is 
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partly based on their release notes). The RNGs are, by and large in order of increasing 
quality: 

1. Quick and dirty 
2. Park & Miller minimal standard congruential generator 
3. Park & Miller with a Bays & Durham shuffle 
4. L’Ecuyer’s two-series combo plus a shuffle 
5. Mersenne twister 
6. Fast Marsaglia 
7. Top-quality Marsaglia 

 
The RNGs number 1-4 are from Numerical Recipes (Press, Teukolsky  et al.). The 
Mersenne twister is based on the algorithm developed by Makoto Matsumoto and 
Takuji Nishimura (see http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html) 
and has excellent statistical properties. The Marsaglia generators (6 & 7) provide an 
extremely long cycle (more than 1.0e356) and also have excellent statistical properties 
(Marsaglia and Zaman).  
The default RNG in Ersatz is the Fast Marsaglia. For many applications this is an 
excellent choice, if probably quality overkill. On the other hand, in my experience 
there is very little speed advantage to be had from moving to a lower quality, but 
faster RNG: the computational bottlenecks are more likely to be in Excel than Ersatz. 
But the user may want to experiment. 

Random deviates 

RNGs produce uniformly distributed random numbers between 0 and 1 (an art that, as 
the reader will have deduced by now, comprises a whole research field of its own). 
The only Ersatz function that reproduces the output of the RNG directly is 
ErUniform01(), the function that returns a uniformly distributed random number 
between 0 and 1. Other Ersatz distribution functions return random deviates from 
other distributions, such as Normal, Gamma, etc. How are these obtained? 
Getting random deviates from a specific distribution, given a random number between 
0 and 1, can be very simple indeed. All that is needed is the inverse of the cumulative 
distribution function (CDF). 
The CDF(x) is the integral (continuous distributions) or the sum (discrete 
distributions) of the density function from the lowest value of the range the function is 
defined for to x. While the density function returns the probability mass at a specific 
point x, the CDF(x) returns the probability mass from the lowest defined value up to 
and including x. The CDF is therefore a non-decreasing function between 0 and 1. 
The figure shows a Weibull(1.8,2.5) density function, and the corresponding CDF.  
For each value on the x-axis you can read from the y-axis how much probability mass 
is lying to the left of it. 
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The inverse of the CDF does something similar but the other way around: pick a value 
from the y-axis, and read off the corresponding value of the x-axis. If you pick a 
random value between 0 and 1 from the y-axis, you can thus read off a randomly 
chosen value from the Weibull(1.8,2.5) distribution. The CDF of the Weibull 
distribution is: 
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The inverse of this function can be written as: 
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To generate randomly drawn numbers from the Weibull(1.8,2.5) distribution in Excel 
you type into a cell “=1.8*(-LN(RAND())^(1/2.5))” (1-x is equivalent to x when x is a 
uniformly distributed random number between 0 and 1), and recalculate (press F9). 
Too easy. The problem is, however, that for only very few distributions, such as the 
Weibull and the Exponential, an analytical expression for the inverse CDF exists 
(none exists for the Normal, for example). So how does Ersatz (and other software) 
obtain random deviates from distributions without known inverse CDFs? 
As with the generation of uniformly distributed random numbers between 0 and 1, 
this comprises a whole field of research in its own. A range of algorithms, often very 
ingenious but hardly intuitive, has been developed. Some examples (with code) 
appear in Numerical Recipes (Press, Teukolsky  et al.), Law and Kelton have a more 
elaborate selection (with pseudo code) (Law and Kelton 2000), but the canonical book 
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in this area (also with pseudo code) is Non-Uniform Random Variate Generation by 
Luc Devroye4 (Devroye). Few people will ever be in the situation to need a 
comprehensive overview of algorithms to generate random deviates, but if you 
happen to be one of those, this book is strongly recommended. 

Common random numbers 

As mentioned in the introduction of this section, one of the problems of random 
numbers is that they are, well, random. This makes the outcome of the model random 
as well, and makes it impossible to assess whether outcome differences are due to real 
differences or to randomness. In addition, it confuses optimization routines used to fit 
the model to observed data. Under these circumstances you would like to have the 
same random numbers over and over again, a randomness reduction technique that 
goes by the name of ‘common random numbers’. 
From the discussion above on RNGs, you can conclude that by providing the same 
seed number to the RNG, you get the same stream of quasi random numbers each 
time. And indeed, that is a solution many programs use to produce common random 
numbers. However, in combination with Excel this technique is highly unreliable. 
Excel determines the order in which the functions in your workbook are evaluated, 
and this order may change with even minor changes to the workbook. So if you have 
more than one Ersatz function in your workbook, the fixed stream of random numbers 
may end up in a different order at the Ersatz functions, thereby breaking common 
random numbers. It is for this reason that Ersatz does not offer the option to set the 
seed number of the RNG. 
You can achieve common random numbers in Ersatz/Excel by creating streams of 
random numbers for each of your input variables, save these to Excel, and reuse them 
as many times you want. This is the way to do this: 

1. Run your model with Ersatz set to as many iterations as you will need. 
2. When Ersatz in done, check the ‘Show input’ box, and click the input tab. This 

will show a table with your input variables and the values generated for each 
iteration. 

3. Copy this table (Ctrl-C), and paste it into Excel. 
4. Replace your input Ersatz functions with ‘ErFixed(range,ErIteration())’, where 

‘range’ is the Excel range which contains the random numbers of the 
corresponding input variable. For details on the ErFixed and ErIteration 
functions, see the Ersatz Function Overview document. 

Note that if you have more than 1 input variable, as is likely, it is a good idea to have 
a single ErIteration function in your spreadsheet, with all the ErFixed functions linked 
to it (see the Common random numbers example spreadsheet). Also note that it is a 
good idea to have several instances of streams of common random numbers and to 
change around the one in use once in a while: avoid relying on a single one on the off-
chance that it produces a very exceptional result. 

                                                 
4 This book from 1986 has been out of print for a long time, with the publisher refusing to re-print. This 
has enraged the author such that he had the whole book scanned and put up his website, where it is 
available for free (http://cg.scs.carleton.ca/~luc/rnbookindex.html). It’s a big download, but worth 
every bit of it. 
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Correlated random deviates 

It may be that your model needs random draws from different distribution functions to 
be correlated. For example, you may want the prevalence of diabetes in the model 
population to be positively correlated with the randomly drawn average body mass 
index (BMI). 
The best described method to obtain correlated random deviates is for the Normal 
distribution. This method uses the covariance matrix of N Normally distributed 
variables, such as you would obtain from a statistical package. The so-called 
Cholesky decomposition of this matrix provides factors that allow to obtain randomly 
drawn numbers from those N Normal distributions with the required correlation 
structure (see (Briggs, Sculpher et al. 2006) for an example for N=2). This method is 
implemented in the Ersatz ErCorrNormal and ErCorrNormalCom functions, see the 
Ersatz Function Overview document for details. 
For other than Normal distributions the picture is less clear. There are a number of 
analytical approaches for bivariate distributions (such as the Gamma), but very little 
for more than two, and I am not aware of any analytical solutions for correlated 
random draws from different distributions. 
To provide correlated random draws from N arbitrary distributions Ersatz therefore 
implements a rank correlation solution. The algorithm is as follows: 

1. Starting point is a user provided correlation matrix. 
2. Using the Cholesky decomposition, N correlated N(0,1) random deviates are 

drawn for each iteration, and subsequently ranked. 
3. For each of the N arbitrary distributions random deviates are drawn for each 

iteration, and subsequently sorted. 
4. At each iteration the rank numbers of the correlated Normals are used to 

obtain the correspondingly ranked random deviate from the arbitrary 
distributions. 

This method is implemented in the Ersatz ErRankCorr and ErRankCorrCom 
functions, see the Ersatz Function Overview document for details. The nature of the 
algorithm requires all the activity to be performed at the start of the run, at each 
iteration the ErRankCorrCom functions simply provide a number from the pre-
calculated list. 
While rank correlation is not the same as Pearson product moment correlation, in 
many cases the results are pretty close, see the RankCorr example spreadsheet for an 
example of rank correlated draws from a Gamma, a Weibull, and a Poisson 
distribution. 

Correlated multinomial and Dirichlet distributions 

The rank correlation algorithm described in the previous section work for univariate 
distributions only. But, as has happened with several other functions available in 
Ersatz, I needed correlated multivariate, in particular Dirichlet, distributions for my 
own research, so there. 
The area of correlated multinomial and Dirichlet distributions seems an untrodden 
field: I’m not aware of any previous work. First I will define what exactly is meant 
here by correlated random draws from these multivariate distributions. It is defined 
here as a number of multivariate distributions of equal dimensionality, with all 
dimensions having the same correlation between distributions. So there is just a single 
correlation matrix, and each category has the correlation specified in the matrix with 
its corresponding category in the other distributions.  
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In the remainder of this section, I will discuss the algorithm for the Dirichlet 
distribution only, but the same algorithm is used for the closely related multinomial 
distribution. The algorithm is based on rank correlation. 
The challenge is that a Dirichlet distribution has the properties that the sum over the 
categories always equals 1, and that the categories have a negative covariance. Of 
course, neither of these properties should be compromised by the imposition of a 
correlation structure with other Dirichlet distributions. 
The algorithm to generate Dirichlet distributed random numbers, based on (Devroye 
1986), uses for each category a random draw from a Gamma distribution with the 
category parameter as the first parameter for the Gamma and 1 as the second. The 
outcomes are summed over the categories, and each category outcome is then divided 
by the sum to obtain the desired proportions for the Dirichlet. 
Given that the draws from the Gamma distribution are independent, this leads to the 
following rank correlation algorithm to obtain correlated Dirichlet distributions: 

1. For each category of the Dirichlet distributions for each iteration draw 
correlated random numbers from a standard Normal distribution using the 
Cholesky decomposition of the correlation matrix. 

2. Rank the numbers for each category. 
3. Draw numbers for each category and iteration from the Gamma distribution, 

and sort for each category. 
4. For each category and iteration, use the ranks of the correlated Normals to 

obtain numbers from the Gamma outcomes. 
5. For each iteration, sum over the categories and divide each category number 

by the sum. 
Again, rank correlation is not the same as linear correlation, and in the case of 
correlated Dirichlet distributions the achieved linear correlation tends to be a bit 
closer to zero than the one specified in the correlation matrix.  
The algorithm for the stand-alone multinomial distribution in Ersatz is based for each 
category on a draw from a binomial distribution, conditional on the draws from 
previous categories (Devroye). This makes it incompatible with a rank correlation 
algorithm as described above. The correlated multinomial function is therefore based 
on the Dirichlet algorithm, with the outcomes obtained by a rounded multiplication of 
the Dirichlet proportion with the sum over the category numbers, except for the last 
category which is assigned the remaining number. This gives a very close 
approximation of the conditional binomial approach. 
See the Ersatz Function Overview document for details on the implementation of 
these functions. 

Valid correlation matrix 

A correlation (or covariance) matrix for 3 or more distributions can be invalid, or, to 
put it mathematically, a correlation matrix needs to be positive (semi) definite to be 
valid. This means that no eigenvalue must be negative and at least one positive. When 
a covariance matrix is obtained from a statistical package, this requirement will be 
satisfied (but beware of rounding error!), but when assembling a correlation matrix of 
3 or more distributions from pairwise observations, it is easily violated. Ersatz checks 
the provided correlation matrix, and it is a fatal error when it is invalid.  
Ersatz therefore offers the option to check your correlation or covariance matrix for 
validity. Choose ‘Options|Correlation’, paste your matrix into the grid (it will 



 

Ersatz User Guide 26

automatically resize to fit), and click the ‘Check’ button. If ‘Matrix valid’ appears, 
you’re on your way.  
If the matrix proves to be invalid, Ersatz can suggest an alternative but valid matrix, 
as close as possible to the original one. Ersatz calculates a valid correlation matrix by 
shifting the original correlation matrix by its lowest eigenvalue. If you provided a 
covariance matrix, this valid correlation matrix is used to calculate a valid covariance 
matrix.  
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Sensitivity and uncertainty analysis 

Introduction 

Uncertainty and sensitivity analysis mean different things to different people. In this 
section I will describe my understanding of uncertainty and sensitivity analysis, and 
how Ersatz can deal with them. 
There are several kinds of uncertainty in a health economic evaluation, Briggs et al 
for example distinguish four, among them uncertainty relating to analytical methods 
and extrapolation (Briggs, Sculpher et al. 1994). The present discussion is limited, 
however, to outcome uncertainty as a consequence of uncertainty in the values of the 
input parameters of the model. This limitation therefore excludes, for example, the so-
called ‘structural uncertainty’ that follows from the fact that there is more than one 
way to model a certain health intervention (actually, an unlimited number of ways). 

Sensitivity analysis 

Sensitivity analysis I define as the quantification of the effect of variation in specific 
input parameters on the outcome. The function of sensitivity analysis is to show 
which variables have the largest impact on the outcome. For the researcher this has 
the specific benefit of pointing out which input variables need to be estimated with 
high precision in order to reduce the uncertainty in the outcome. Ersatz implements 
two types of sensitivity analysis. 
 
Univariate deterministic sensitivity analysis 
 In this type of sensitivity analysis the values of the input parameters are varied one by 
one, and for each variation the output variables are calculated. The variation in the 
input can be either plus and minus one standard deviation, or plus and minus 10% of 
the mean input value. Output is as tornado graphs and a table. 
 
Multivariate probabilistic sensitivity analysis 
This type of sensitivity analysis builds on the results of an uncertainty analysis, and 
therefore requires that first an uncertainty analysis is run (see below). Given all the 
values of all the input and output variables, the probabilistic senstivity analysis then 
calculates the correlation coefficients between each input and output pair of variables. 
Ersatz implements a number of methods to calculate these correlation coefficients (for 
details on these methods, see for example (Conover 1999)): 
 

1. Pearson's Product Moment Correlation Coefficient. 
This method assumes that there are no correlations between the input variables 
and that there exists a linear correlation between the input and output variable 
pair. In particular the linearity assumption will often be violated, so this might 
not be a good choice. 

2. Spearman's Rank Correlation Coefficient. 
Unlike Pearson’s PMCC this method does not assume linear correlations, 
however it does assume that there are no correlations between the input 
variables.  

3. Kendall's tau. 
Kendall's tau uses a different method, but is for all practical purposes 
equivalent to Spearman’s RCC. 
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4. Spearman's input-input Rank Correlation Coefficient. 
This option allows to investigate whether there are correlations between the 
input variables. Note that the scattergrams allow a visual inspection of 
correlations between model variables. 

5. Partial Rank Correlation Coefficient. 
The Partial RCC is provided in case the input variables are correlated. It is, 
however, a rather computationally involved method, in particular when the 
number of variables is large. 

 
When offered several options, the question becomes which to use. The default method 
is Spearman’s RCC, and this method is usually adequate. Depending on taste the user 
might prefer Kendall’s tau. But in both cases it is wise to check the input variables for 
strong correlations, and if they exist to use the Partial RCC instead. 

Uncertainty analysis 

Uncertainty analysis I define as the quantification of the simultaneous and combined 
effect of the uncertainty in the input variables on the outcome of interest. Rather 
implicitly the uncertainty in the input variables that is meant here is uncertainty due to 
sampling error. For the uncertainty analysis we replace in our model fixed parameter 
values by distributions5 with a mean and standard deviation, and repeatedly 
recalculate the model with values sampled from those distributions. This makes sense 
only for parameters that can be meaningfully described by a distribution, and these are 
in practice parameters that have been (or could have been) estimated from sample 
data. 
Not all inputs with uncertain values confirm to this criterion. A classical example in 
health economic evaluation is the uncertainty of the discount rate, the degree of time 
preference included in the analysis. Health economists have endlessly debated what 
the discount rate should be, but no consensus has been reached. So while the value of 
the discount rate is definitely uncertain, it is not uncertainty due to sampling error. Its 
effect is therefore best explored by univariate sensitivity analysis: simply recalculate 
the model outcome using a range of values for the discount rate. 

Conclusion 

So what should you do, sensitivity or uncertainty analysis? The answer is an 
emphatically “Both!”. Sensitivity and uncertainty analysis both examine the 
uncertainty in the outcome of your analysis, but they answer to different questions. 
Moreover, they give only partial answers: only uncertainty due to uncertain values for 
input parameters is explored. Methods to include quantified uncertainty due to other 
sources, such as model structure, are currently not available, and may very well never 
become so.  
 
 
  

                                                 
5 For guidance on which distributions to use, see the section on Good Modelling Practice below. 
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Good modelling practice 

Introduction 

Good modelling practice (GMP) is not something that is set in stone, but rather a 
collection of rules and norms that, when followed, will make your model qualify. 
Some of these rules are hard ones, but most are not, and in the end there is also an 
aesthetic dimension. This section is not meant as a general introduction to GMP. It 
will touch only briefly on most aspects, and then concentrate on an aspect very 
pertinent to modelling with Ersatz: the choice of appropriate distribution functions for  
given model variables. 

Rules and norms 

Formal validity 
An important rule, and the only really hard one, is that of formal validity: the model 
should calculate what it is supposed to do. In other words, no bugs. 
As such this seems obvious, in practice it is not. The power of Excel as a modelling 
environment is its flexibility, but this is its main weakness as well. Because anything 
goes, it is quite easy to make a royal mess. It requires serious self-discipline to avoid 
this. In addition to self-discipline, techniques such as stress-testing (putting variables 
to their extreme values) and check-sums (making sure all items in your model are 
accounted for: none are generated or disappear miraculously) are recommended. 
 
Simplicity 
Given the research question, a model should always be the simplest one that can 
anwer it. This rule is basically the application of Ockham’s razor to modelling, and 
therefore goes a long way back. It is an important principle, and a pre-requisite for the 
next rule. 
 
Transparency 
‘Lack of transparency’ is probably the most used argument to challenge results from a 
modelling exercise. While this argument may sometimes be borne out of laziness or 
even bad faith, it is all too often justified. You cannot expect people to believe your 
model’s results while the model itself is a black box to them. Your duty as a modeller 
is to reveal how your model works, and to explain the results, all in a language that is 
understandable to people not familiar with modelling, but likely to be experts in the 
field your model pertains to. If you fail to convince them, your work will have been in 
vain (even if you were right). 
 
Elegance 
This is probably the hardest criterion of all to define. However, when a model is valid, 
simple, and transparent, it already comes a long way to being elegant as well. But 
elegance requires something extra, a semblance of effortlessness. Good writers 
achieve elegant prose by developing a clear structure to their argument, and then by 
putting the right words in the right places (needless to say this requires hard work: the 
effortlessness is a semblance, and the benefit is to the reader). 
In much the same way elegance of a model rests on a clear structure (simplicity and 
transparency), and of the choice of the right distributions in the right places. Choosing 
the right distributions is the subject of the next section.  
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Choosing appropriate distributions 

Introduction 
When replacing a model variable by a distribution function and its parameters, the 
modeller in many cases has to rely on the reported standard deviation or confidence 
intervals of that particular variable. The confidence intervals are typically calculated 
using the assumption of a Normal distribution, even when this leads to impossible 
results. For example, the lower limit of a confidence interval of a proportion may end 
up in negative territory, or the upper limit is greater than one, by definition impossible 
values. 
When reporting confidence intervals no real harm is done, it only looks a bit 
awkward. However, when randomly sampling from such a Normal distribution, and 
recalculating the model with an impossible value, the results are not just awkward, but 
are actually invalid. 
A ‘solution’ is then to truncate the Normal at 0 and 1. However, this is a bad solution, 
for three reasons. It is ugly, because it causes discontinuities at 0 and 1. It is invalid in 
the sense that the resulting distribution will not have the intended mean and standard 
deviation. And it is bad modelling practice, because a perfectly good solution exists. 
When a randomly drawn value is to be constrained between 0 and 1, the natural 
candidate distribution is the Beta, a distribution that under no circumstances will 
produce values outside the 0..1 range. The Beta distribution has two parameters, by 

convention called α1 and α2. To calculate the parameters of the Beta distribution that 
has the reported mean and standard deviation, you set the equations for the mean and 

standard deviation of the Beta equal to µ and σ, the mean and standard deviation of 
the Normal: 
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Re-arranging these equations gives the values of α1 and α2 as functions of µ and σ:  
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The resulting Beta distribution has the intended mean and standard deviation, shows 
no discontinuities, and stays within the 0..1 range by definition. 
When no standard deviation is reported, but a confidence interval is, it is easy to 
calculate the standard deviation s from the confidence interval: 
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with HCI and LCI the upper and lower limit of the confidence interval respectively, and 
z the factor from the standard Normal that applies to the confidence interval (e.g 1.96 
for the 95% confidence interval). 
To summarise, the resampling technique used in uncertainty analysis requires to make 
sure that sampling from the distributions used never produces values that are outside 
the valid range of that variable. You can achieve that by using the ErTruncate 
function, but it is much more elegant to use distributions that will by definition not 
produce values that should not occur. A number of suggestions are in the remainder of 
this section. 
 
Prevalence and probability: the 0..1 range 
With a two category prevalence (e.g. diseased and non-diseased) the Binomial 
distribution is, almost by definition, the correct choice. In that case the Binomial is 
defined as the number of diseased in a population of size N.  When you want to 
describe the prevalence as a proportion, you can use a random draw from the 
Binomial, divided by its N parameter. The resulting number will never get outside the 
0..1 range. 
The next step is to get the correct parameters. The Binomial has two parameters: N 
and p. The p parameter is simply the observed prevalence (expressed as a proportion). 
The standard deviation s is: 
 

 ( )pNps −= 1 ,  

 
again divided by N when expressed as a proportion. Given a standard deviation of the 
prevalence s you can therefore calculate the N that goes with the p and the standard 
deviation by: 
 

 
( )

2

1

p

ss
N

−
= . 

 
However, the Binomial is a discrete distribution. When N is big, the resulting 
prevalence random draws will be nearly continuous, but for small N this may not be 
the case. To avoid the discontinuities that follow from the discrete nature of the 
Binomial, you can use the Beta distribution as an approximation. The Beta is, in 
Bayesian circles, often referred to as a ‘conjugate’ distribution of the Binomial 
(Gelman, Carlin et al.). The parameters of the Beta that approximates the Binomial 
(with parameters N and p) are 
 
α1=Np, and 
 
α2=N(1-p). 
 
Because prevalence proportions and probabilities share the same range of 0..1 values, 
the discussion above applies equally to transition probabilities in your model. 
 
Multiple categories prevalence and transition probabilities 
The discussion above is pertinent to two category prevalence, but there exist 
generalisations to multiple categories. The Multinomial distribution is the 
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generalisation of the Binomial, and the Dirichlet distribution the generalisation of the  
Beta. Both are implemented in Ersatz as ‘component’ random functions, see the 
Ersatz Function Overview for details. 
 
Two-sided arbitrary limits 
What if you need two-sided limits on the values from a random function other than 0 
and 1? Again the Beta distribution is useful here. If you need random draws from a 
distribution f between the values min and max, you can use 
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The mean of this function will be: 
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and the standard deviation: 
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In other words, you can simply shift and scale the distribution because the mean and 
standard deviation are measured in the same units. For the same reason, the derivation 
of the parameters of the Beta is straightforward: calculate the mean and standard 
deviation of the Beta as 
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and then use the equations  
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from above to calculate the parameters of the Beta. The equations above are useful to 
calculate the parameters of the ErBeta4 function, which implements a rescaled Beta 
function along the lines described here. 
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One-sided limits 

One-sided limits are best modelled using one of the distributions that have a 0..∞ 
range: Lognormal, Gamma, Weibull, and Exponential for continuous distributions, 
and Binomial, Geometric, Negative Binomial, and Poisson for discrete distributions. 
To obtain random numbers with a lower limit A simply use A+dist, where dist stands 
for one of the continuous or discrete functions mentioned above. Similarly, for 
random numbers with a upper limit A use A-dist. 
 
Relative risk 
For the relative risk (RR) the standard assumption is that ln(RR) has a Normal 
distribution with parameters ln(RR) and its standard error SE[ln(RR)]. More formally: 
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This amounts to saying that RR has a Lognormal distribution. 
To obtain an estimate of the SE[ln(RR)], consider the following two-by-two table: 
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For the rate ratio the SE is obtained by:  
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For the risk ratio the following equation holds: 
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If no two-by-two table is available but the confidence interval is known, then the 
SE[ln(RR)] can be obtained using the following equations (assuming a 95% 
confidence interval): 
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The drawback of the assumption that ln(RR) has a Normal distribution is that the 
mean of the sampled values from this distribution is somewhat higher than RR 
because of the skewed Lognormal distribution. Ersatz therefore has an ErRelativeRisk 
function with an adjustment such that the mean of the sampled values equals RR. The 
drawback of the correction is that the resulting uncertainty interval is shifted 
somewhat than otherwise would occur. The user will have to decide which is the 
lesser of these two evils.  
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See the Ersatz Function Overview for details on the ErRelativeRisk function, and 
(Barendregt 2010) for details on the correction. 
 
Some more general guidance 
Apart from the issue of the valid range of a model variable there are some more 
general considerations to choose specific distributions for certain types of variables. 
Below is a list of suggestions. 
 

• In many cases the Normal distribution is an obvious choice: by virtue of the 
central limit theorem the mean of a sample of sufficient size will have a 
normal distribution, irrespective of the underlying distribution. Moreover, 
‘sufficient size’ does not mean huge: this property of the mean emerges for 
surprisingly modest sample sizes. 

• As discussed above, prevalence and probability are best modelled using 
Binomial or Multinomial distributions, and their continuous approximating 
distributions, the Beta and the Dirichlet respectively. 

• A constant rate6 in an age or time interval is often assumed to have a Poisson 
distribution with the number of cases as its parameter. As a continuous 
approximation of the Poisson distribution the Gamma distribution can be used. 
The Gamma that approximates a Poisson(ν) distribution is Gamma(ν,1). When 
not the number of cases but the mean (denoted by m) and the standard 
deviation (s) of the rate are given, the parameters of the approximating 
Gamma(α,β) are: 
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• Survival can be modelled either non-parametric (i.e. empirical) or parametric. 
For empirical survival Ersatz provides the ErSurvival function, see the Ersatz 

Function Overview for details. Parametric survival is often modelled using the 
Weibull distribution (“time to failure” in engineering cycles), but the 
Lognormal and Gamma distributions mostly give very similar results.  

• Costs are usually attached to units of resources: number of drug prescriptions, 
hospital days, etc. Such discrete count data are modelled using the Poisson 
distribution with the number of units as the parameter. Again the Gamma 
distribution can be used as a continuous approximation, see the discussion of 
rates above. 

• Utility and disability weights are usually confined to the 0..1 range, which 
makes the Beta the distribution of choice. Sometimes health states worse than 
death are allowed, the corresponding utility can be modelled as 1- a skewed 

                                                 
6 Unfortunately, epidemiologists are often very sloppy in the use of technical terms. It is fairly standard 
to speak of the ‘prevalence rate’, while prevalence is clearly a proportion, for example. Rate is here 
properly defined as the number of cases in a time interval, divided by the person-years at risk (or any 
approximation thereof). 
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distribution such as the Lognormal, see the discussion on one-sided limits 
above. 

 
The take-home message from this section is that choosing distributions for the 
variables in your model is not an arbitrary process: a careful choice of distributions 
avoids problems, makes the model more elegant, and in some cases, such as 
prevalence, relative risk, and utilities, aligns the model with existing theory and 
practice in epidemiology and health economics. 
Readers will have noticed that I haven’t recommended the use of the Triangular 
distribution in the guidance above, despite this distribution being rather popular. In 
fact, I agree with Briggs et al that the use of the Triangular distribution should be 
avoided (Briggs, Sculpher et al. 2006). It is an ugly distribution because of the 
discontinuties, and it lacks a grounding in statistical theory. 
Nevertheless there may be circumstances where you have indeed not more than the 
opinion of a single expert about a minimum, a maximum, and a most likely value for 
one of your variables7. That is a rather desperate situation, but even then you are 
probably better off using the Pert instead of the Triangular distribution.  
The Pert distribution (see the Ersatz Function Overview for details) takes the same 
parameters as the Triangular (minimum, mode, maximum), but it is in fact a re-scaled 
and re-parametrised Beta distribution. It therefore is firmly grounded in statistical 
theory, and, while serving the same purpose, does not have the drawbacks of the 
Triangular distribution. Ersatz provides the Triangular distribution, but I most 
emphatically do not recommend its use. 

                                                 
7 When you have several expert opinions, non-parametric bootstrapping is a good option. 
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Multiple runs 

Introduction 

Ersatz offers the option of doing multiple subsequent runs. When checking the 
‘Multiple runs’ box on the ‘Settings tab’, an additional box on the ‘Calculation panel’ 
becomes visible, allowing to specify the number of runs Ersatz will perform 
consecutively. 
The reader may wonder why this is useful. If you do, say, ten runs in a row, each run 
will supersede the results from the previous one, and at the end you will simply have 
the results from the last run, with the previous ones only having wasted your and the 
computer’s time. 
When used like this, the multiple runs option indeed makes no sense. But there are 
circumstances where it does, and these include, but are not limited to, the following: 

1. Each run implements a different intervention. 
2. Each run uses a different assumption on a parameter such as discount rate. 
3. Each iteration applies the intervention to different sub-populations, such as 

different age groups, and the result for the population is the sum over these 
sub-populations. 

4. Microsimulation, where an iteration stands for an individual, and a run for a 
population. 

The case of microsimulation is discussed in the section of that name above, here I will 
discuss the first three instances. 

Different interventions, assumptions, or sub-populations 

When multiple runs are used to process a number of different interventions and/or 
using various assumptions that affect the outcome, Ersatz is basically being used in 
batch mode. Each of these interventions/assumptions could have been analysed in a 
single run, but the user prefers to lump them all together in one big go. 
I must admit to doubts about the usefulness of this. It requires to put in special 
functions to save the results, but you will miss out on much of the detailed output 
anyway, and it will tie up your computer for an extended period. But some people 
prefer it that way, and Ersatz lets you. 
A stronger case for multiple runs, and one that I have used repeatedly, is when the 
same model (with different data) is applied to several sub-populations, and the result 
you are after is the sum (or average) over those sub-populations. In particular, since 
age is such an important determinant of health outcomes, we always model age 
explicitly for our health economic evaluations. However, the model structure is the 
same for each age group, it is just the parameters that differ. 
In those cases the multiple runs option allows to model each age group explicitly 
without having to replicate the model for each age group. The way we did this was to 
set the number of iterations equal to the number of age groups we distinguished, and 
set the number of runs equal to what normally is the number of iterations (say, 2000). 
With the ErIteration() function, that returns the number of the current iteration, we 
cycled through the age groups in each run, while using the Excel Index and Match 
functions to look up the appropriate data for the age group at hand. 
While this works a treat, it also gets beyond basic Excel use and moves into the realm 
of programming. The example workbook ‘BreastCaMarkovMC’ shows how to do 
this, and the next section discusses the Ersatz and Excel functions that are particularly 
useful for this kind of modelling. 
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Useful functions for multiple runs 

ErRunoutput and ErRunSensInput 
The ErRunOutput function is a variant of the ErOutput function that picks up only a 
single value at the end of each run. When the option “Use ErRunOutput functions” is 
checked, Ersatz will use the ErRunOutput function values from multiple runs to 
calculate medians, means, and confidence intervals across those multiple runs, in 
effect treating the outcome of a run the same as the ErOutput function treats the 
outcome of each iteration. 
ErRunSensInput is the function similarly matched to ErSensInput, and can be used to 
do sensitivity analysis across multiple runs. 
 
ErCondStoreArray and ErCondRetrieveArray 
The ErCondStoreArray and ErCondRetrieveArray functions are variants of the 
ErStoreArray and ErRetrieveArray functions that store and retrieve Excel ranges, 
depending on a Boolean input parameter being true. Of course this Boolean can be 
made true on any condition, but one of them is at the end of a run, which would make 
these function behave similarly to the ErRunOutput function discussed above. 
 
ErTotal and ErMean 
The statistical functions ErTotal and ErMean return a single value at the end of a run. 
Used together with the ErRunoutput function these (and other statistical) functions 
allow you to determine what will be stored in the ErRunoutput function. ErTotal gives 
the sum of its input parameter over the iterations in a single run, while ErMean gives 
the average. Other statistical functions that report a value at the end of a run are 
available, see the Ersatz Function Overview for details. 
 
ErIteration, ErSetItno, and ErRunno 
Often when using multiple runs it is necessary to know which iteration or run is 
currently being executed. For example, when there are a number of age groups to loop 
through in each run, you often need to know which age group (=iteration) you are 
currently dealing with in order to look up the applicable data. The ErIteration function 
returns the number of the current iteration, and ErRunno of the current run.  
ErSetItno is handy when you need in a particular model a specific number of 
iterations at all times. For example, you have modelled 15 age groups, or 2448 
patients (in a microsimulation model). The ErSetItno function allows you to enter that 
specific number in the spreadsheet, making sure that always the correct number of 
iterations is executed. 
 

ErFixed 
If you need to look up data depending on the current iteration or run number, there are 
several options. Ersatz offers the ErFixed function, that lets you get a specific value 
from a range. Excel has the Hlookup and Vlookup functions, but a better (faster) 
choice is often the Index function. In this context Excel’s Match function can be 
useful too, see the Excel Help for details and the example spreadsheets for 
applications. 
 
ErConditional 
By default all Ersatz random functions draw a new value at each iteration, and in most 
cases this is the desired behaviour. However, when using multiple runs there likely 
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are variables you want new random draws for only some of the iterations, or even just 
once per run. For instance, an effect size often applies to all age groups, so if you are 
using the multiple runs option to model various age groups in your population, you’ll 
want to draw a single value per run and apply that to all age groups. 
Similarly, in microsimulation, where an iteration stands for an individual, you have to 
do uncertainty analysis by doing multiple runs, with some individual level functions 
(such as ErSurvival) drawing a random value at each iteration, while population level 
functions (such as ErRelativeRisk for effect size) draw a random value only once for 
each run. 
For this situation Ersatz offers the conditional firing option and the ErConditional 
function. Which one of the two is most suited will depend on your application, see the 
section on Conditional firing below. 
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Excel macros 

Introduction 

Extended functionality in Excel is often implemented by macros, based on Visual 
Basic for Applications (VBA) code. Ersatz lets you execute Excel macros before 
and/or after each iteration, and before and/or after each run.  

Recalculation during macro execution option 

During macro execution the spreadsheet is likely to be recalculated, which would 
normally prompt the Ersatz functions to draw a new value. However, by default the 
Ersatz functions will not draw new values during macro execution. If this is not the 
desired behaviour you must uncheck the check box on the Macro window. 

Excel macros are slow 

A word of warning is in place here: Excel macros are slow. This may not be obvious 
when you execute a macro just once, but when a macro is executed hundreds or 
thousands of times, it starts to add up.  
For example, in one of my own applications an uncertainty analysis was done for an 
admittedly large spreadsheet (Gartner, Barendregt et al. 2009). On each iteration 
Ersatz would draw prevalences of smokers, former smokers and non-smokers from 
survey data using  Dirichlet functions. The results from these draws were then used to 
fit a model of smoking uptake and cessation, the fit being done with the Excel Solver 
add in that was called on each iteration by a macro8. The 2000 iterations took about 
24 hours to run! 
This may be an extreme example, but the take-home message is that if you can avoid 
using macros, for example by using the techniques discussed in the section on 
Multiple runs, you will usually be much better off. 
 

                                                 
8 This was before Ersatz version 1.1 implemented its own optimization functions.   



 

Ersatz User Guide 40

Conditional firing 

Introduction 

By default the Ersatz random functions draw a new value at each iteration. In most 
instances this will be the desired behaviour, but there are exceptions. Above I 
discussed microsimulation and the use of the multiple runs option, both cases where 
you might want to restrict the number of times some of the Ersatz functions draw to, 
for example, once at the start of each run. And of course there may be other reasons to 
restrict the number of times the functions should fire. 
Ersatz offers two ways to implement this: the ‘Conditional firing option’ and the 
‘ErConditional’ function. They are operated very differently, one as an option in 
Ersatz, the other as a function in the spreadsheet. 

Conditional firing option 

This option is accessed by choosing ‘Options|Conditional firing’. This will open the 
Conditional firing window, which displays a list of the Ersatz input functions in the 
connected spreadsheet, together with the conditions that apply to each of them (which 
will be the default value of ‘Every iteration’ at first display). The condition fields in 
the list can be changed for each function individually using the drop-down list of that 
field. Available options are ‘Once at the start of the run’ and ‘None’, the latter 
meaning that the function will return its mean value at each iteration. Please note that 
in order for the conditions to take effect, the check box on this window needs to be 
checked. 
You can save the settings of the condition fields to a spreadsheet (use Ctrl-C), edit 
them, and paste them back in (use Ctrl-V), or equivalently use the popup menu when 
you right-click the list. The ‘Reset list’ button will reset all conditions back to the 
default condition specified in the ‘Default condition’ radio box. 

ErConditional 

ErConditional is one of the functions that Ersatz adds to Excel. ErConditional takes a 
boolean and an arbitrary other value as parameters, see the Ersatz Function Overview 
for details. This other value may come from an Ersatz random function or from any 
other source. When the boolean is TRUE ErConditional returns the current other 
value, when FALSE the previous one, or, to put it differently, the value returned by 
ErConditional is kept constant.  
For example, when you obtain the boolean value from “(ErIteration()=1)” it will be 
TRUE only at the start of each run. A random value from a function that is the value 
parameter of ErConditional that is drawn at this first iteration will then be returned by 
ErConditional for the rest of that run. 
Of course the boolean value can be made to depend on any user-defined condition, 
making this a very flexible choice. 

Conclusion 

Ersatz offers two possible solutions if you want to restrict the number of times its 
random functions will fire. The ‘Conditional firing’ option is rather limited, but 
requires no changes to the spreadsheet. The ErConditional function is the most 
versatile, but has to be implemented in the spreadsheet. Which one will work best for 
you will depend on your application. 
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Optimization 

Introduction 

Like some other topics touched upon in this User Guide, optimization constitutes a 
whole area of research by its own. It is possible, and people have done so, to write 
whole books on the subject, or even on a single method. This section will only give a 
very brief introduction to the topic, and primarily with a view to what has been 
implemented in Ersatz, and how to use it. For those looking for a more comprehensive 
overview of the topic, the Wikipedia page on ‘Optimization (mathematics)’ is a good 
place to start. 
There are many different computer algorithms available for optimization, and new 
ones, or modifications of existing ones, are developed all the time. There are two 
reasons for this (and they are very important to take on board): 

1. Optimization tends to be costly (as in ‘taking a lot of computer time’), so there 
is a constant drive towards more efficient algorithms. 

2. There exists no ‘one size fits all problems’ algorithm. An algorithm that blazes 
through one kind of problem can spend an inordinate amount of time on 
another, or even fail miserably. And some algorithms are designed to tackle 
very hard problems (which means they throw a lot of computing power at it), 
and you would waste your and the computer’s time to apply it to a problem 
where a more efficient method could do the job just fine in a fraction of the 
time.    

The take-home message here is that you should always be aware of the kind of 
optimization problem you have on your hands, and what method would be most suited 
to solve it.  
Because no single method is best under all circumstances, Ersatz implements four 
different ones. The remainder of this section will first discuss some basic concepts in 
optimization, and then describe the kinds of optimization problems the user should be 
aware of, matching them with the most suitable optimization method. Finally, I will 
give details of the four methods, the various options they take, and give some rules of 
thumb when to use what.   

Some basic concepts 

Setting the stage 
An important distinction is the one between combinatorial and continuous function  
optimization. Much of the mathematical literature is on combinatorial optimization, 
which looks at problems with a countable but very large number of distinct outcomes. 
A famous example is the ‘travelling sales person’ problem: find the shortest route to 
visit N places without visiting any place more than once. While this is an interesting 
problem (and certainly not without practical application), it is not the kind of problem 
that we are concerned with here. 
Continuous function optimization comes in when we need to find the parameters of a 
function that will make the function return a specific value9. More formally, we have 
a function f which takes a N-dimensional vector of parameters x, and we want to 
know the value of x which will make f(x)=y. This kind of problem returns time and 

                                                 
9 Please note that, despite the adjective ‘continuous’, this includes functions that return discrete 
outcomes, such as ‘number of patients developing metastases’. For the purpose of the discussion here, 
this is a continuous outcome, albeit one with granularity. 
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again in health economic evaluation (as in many other applications). For example, 
what combination of probability to develop metastases and parameters for survival 
with metastatic disease will reproduce the observed number of deaths from breast 
cancer?  
The reader should note two potential difficulties at this point. Firstly, there may not 
exist an x such that f(x)=y. And secondly, there may exist multiple xs such that f(x)=y. 
The second difficulty, while not trivial, is one that can be solved by using additional 
information. For example, a solution may exist that requires one or more of the x in x 
to be negative, which may be impossible (because they are probabilities, for 
example). This leads to the topic of constrained optimization, see below. 
Nevertheless, even after adding information, you may end up with a range of possible 
parameter values instead of some point values. Such is life.  
The first difficulty, no x exists such that f(x)=y, is tackled by reformulating the 
problem from achieving a specific target outcome to a minimization problem. In 
particular, we define a loss function such that minimizing the loss function with 
respect to the input vector x will result in an outcome that is as close as possible to the 
desired outcome y. A frequently used and effective loss function is the squared 

difference, ����� − ���, which can be generalised to a sum of squared differences in 
order to achieve a range of desired outcomes (see below for a more detailed 
discussion of the loss function). 
A further advantage of using a loss function is that all optimization problems (finding 
a maximum, a minimum, or a specific value) are reduced to the same problem: 
finding the minimum of a loss function. This is why optimization in Ersatz is 
implemented as minimization only. 
 
An example: the OptimizationIt workbook 
To make all this more concrete, consider the example workbook OptimizationIt.xls 
(as all examples available from the Ersatz entry in the Windows start menu). This 
workbook has (made-up) data from three annual surveys about smoking prevalence. 
In order to estimate the annual trend in smoking prevalence, a linear function has been 
fitted through the three observations, which leads to an annual change in smoking 
prevalence of -2.7 percent point (cell B18). 
However, the smoking survey data are subject to sampling uncertainty, and therefore 
the estimated annual trend should get an uncertainty interval. The sampling 
uncertainty of the survey data has been modelled by Beta distributions with 
parameters number of smokers and non-smokers, respectively (if you wonder why 
Betas and why these parameters, check out the topic on Good Modelling Practice in 
this User Guide).  
In order to obtain an uncertainty interval for the estimated annual trend we need to 
draw random values from the Beta distributions, refit the linear function, and repeat 
this procedure many times. 
In the workbook this has been implemented using the Ersatz optimization functions  
ErMinimize (cells B12 & 13) and ErMinimizeResult (cell B16). These two functions 
always work in tandem, and both need to refer to the same name in order to do so (in 
the example ‘fit1’ in cell B10). 
In addition to the name parameter, ErMinimize takes an Excel range as an input 
parameter. These values act as the starting point of the minimization, see below for 
more on starting values. The output of ErMinimize is a range of the same dimensions 
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as its input range, and to achieve that ErMinimize has to be entered as an Excel array 
formula10. 
The ErMinimizeResult function takes, in addition to the name parameter, the outcome 
of the loss function as a parameter. The loss function is modelled as the sum of 
squared differences (using Excel’s SUMXMY2 function) between the observed 
survey data points and the fitted values from the linear function. 
To run the optimization, check the ‘Optimization’ box in the Ersatz area of the 
Settings tab: this will open the Optimization tab. You then type the name of the 
ErMinimize function (‘fit1’) into the Name textbox, leave the other settings 
unchanged, and click the ‘Calculation’ button. Ersatz will do the specified number of 
iterations, fitting the linear function after each iteration. Output of the run is the 
distribution of the trend in smoking prevalence, and the sum of squared differences 
between the survey data points and the fitted values (this should be positive but close 
to zero).  
 
An iterative process 
So how do optimization algorithms go about their business? Basically, by trial and 
error. The algorithm puts in a trial vector of parameters x, and obtains the outcome of 
the loss function. Next it puts in another trial vector, and evaluates the loss function 
again. If this looks better (i.e. is less), then it thinks it is on right track, and tries 
something similar. If it is worse, it tries something else. It stops when nothing it 
comes up with gives an improvement, or when it has reached the maximum number 
of tries. 
In other words, it is an iterative process, and that is why it tends to be computationally 
costly. In large part, the computational load is determined by the number of loss 
function evaluations (in Excel speak: recalculations of the workbook) the algorithm 
requires.  
Some algorithms, such as the Quasi-Newton, put a lot of smarts into guessing what 
the next trial vector should be, and consequently can be very fast, but are vulnerable 
to deviations from the assumptions they make about the problem. Others, such as the 
Down-hill Simplex method, don’t try as hard, therefore require more loss function 
evaluations and generally are slower, but are also more robust. 
 
Local minima: the bane of optimization 
A common problem in optimization is the existence of local minima. What we want 
to find is the global minimum: the point where the loss function reaches its lowest 
value. But many optimization problems can be visualised as hilly landscapes: there 
will be one valley that is the deepest, but there may be many shallower ones around. 
Once the optimization algorithm has entered such a shallow valley, it will tend to find 
its lowest point, and then quit. 
A number of strategies have been proposed to deal with this problem, none of which, 
however, offers a sure fire solution. 

1. If you have a reasonably good prior idea which values of the parameters will 
give rise to the global minimum, supply these values as the starting point of 
the optimization. More in general: you should provide starting values for the 

                                                 
10  See the Excel Help on array formulas. Briefly: select the range of cells you want the output range to 
appear in (needs to have the same size as the ErMinimize input range), type your formula, and then 
press CTRL-Shift-Enter. This will result (if all went well) in your formula appearing in all the selected 
cells, embedded  in curly braces. 
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optimization algorithm that are sensible. If you provide starting values such 
that the model outcome will hardly change as a consequence of the trial 
parameters the optimization algorithm comes up with, it will likely give up 
right away. 

2. Redo the optimization with different starting values. If you end up with a 
different outcome, you can be sure that local minima are a problem (of course 
you cannot be sure that you have found the global minimum). If you get the 
same outcome, you may have found the global minimum (but again, you 
cannot be sure). 

3. Restart the optimization at the solution found (this is an option you can set in 
Ersatz). The optimization algorithms take some bold first steps, and resort to 
smaller and eventually tiny steps if they think to be close to a minimum. If the 
minimum you’ve found is a local one, the bold first steps of a restart might 
take you out of it (and then again, they might not). 

With all the caveats in the above paragraph, it will be clear that these strategies are 
only partial solutions at best. Therefore a more radical approach has been developed: 
stochastic optimization. 
 
Stochastic optimization 
The discussion so far has (implicitly) been about deterministic optimization: 
algorithms that always will choose a direction that gives a lower outcome of the loss 
function. As we have seen, this makes them vulnerable to ending up in local minima. 
Stochastic optimization uses algorithms that try to avoid this pitfall by introducing a 
stochastic element into the decision making. Ersatz implements two such algorithms: 
Simulated Annealing and Cross-Entropy (more details on the methods are below).  
By casting a wider net, these algorithms can indeed avoid at least some of the local 
minima, but there is a price. The Cross-Entropy method, for example, needs 
something like 20 times as long to run the OptimizationIt.xls workbook than the 
deterministic Quasi-Newton and Down-hill Simplex methods. Clearly, you would 
rather not use Cross-Entropy unless necessary. 
 
Noisy optimization 
Yet another hard problem in optimization occurs when the outcome of your model 
(and therefore your loss function) is stochastic. It is easy to see why this will upset 
the optimization algorithm: when the target value moves around randomly, it 
becomes very hard to zoom in on it. 
But some methods get more upset than others. The Quasi-Newton method as 
implemented in Ersatz cannot deal with noisy optimization at all: it goes completely 
off the rails. The Down-hill Simplex method is somewhat more resilient and does 
zoom in on a minimum of a moderately random loss function; however, when there, 
it tends to keep trashing around and only stops when it exceeds its maximum number 
of tries. The Ersatz implementation therefore offers an optional additional stopping 
criterion; see the discussion of the Down-hill Simplex method below. 
By their very nature you would expect the stochastic optimization methods to be best 
suited for noisy optimization, and I have indeed obtained reasonable results with the 
Cross-Entropy method. However, in my experience its result is not very precise, and I 
tend to do a follow-up optimization with the Down-hill Simplex method. 
Of course, when your model is very noisy, all the methods will fail, simply because 
as stochasticity increases, the amount of information about the location of the 
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minimum of the loss function decreases. You may need to look into variance 
reduction methods when this is the case, see for example the section on ‘Combating 
randomness in microsimulation’ above. 
 
The loss function  
The loss function is a crucial element of the optimization process, and you should 
give it some careful thought. Importantly, you should realise that the optimization 
algorithm knows nothing about your model: it simply proposes a trial vector of 
numbers, and gets back a single number from the loss function.  
So that single number should contain all the information it needs: it should be lower 
when the proposed vector produces a better result (and vice versa). Moreover, it 
should be proportionally lower: when the result is much better, the loss function 
should return a much lower number. And importantly, there should be no 
discontinuities in your loss function result: a vanishingly small change in one of 
numbers of the proposed vector should not lead to a sudden jump in the result. 
Put differently, your loss function should be a smooth function of all the elements 
that determine whether you consider a particular solution better or worse. Smooth 
here means: no discontinuities and no flats (i.e. areas where the loss function returns 
the same value for a large range of the input variables). 
In addition, it should preferably be a balanced function: the various elements should 
enter the loss function with a comparable size, rather than the physical size of the 
variable. For example, if you enter a total number of incident cases together with 
prevalence as a proportion, the optimization algorithm will basically ignore the 
proportion (a number between 0 and 1) and focus on the much larger number of 
incident cases exclusively.  
So you might need to scale your variables that enter the loss function such that they 
are of comparable size. You might also want to weigh the variables such that the ones 
you deem more important are more closely matched in the solution than the less 
important ones. 
If you come away from this discussion with the impression that designing a loss 
function is a bit of an art, then that is exactly the kind of message I wanted to convey. 
Typically, in complex cases with many variables in the loss function, its design is 
something you will revisit a few times, depending on the outcome of a previous 
optimization run. But simply taking the sum of squared differences between target 
and model outcomes as a loss function usually is a good place to start.   
 
Constrained optimization 
It often happens that you want to fit some variables that can take on only a limited 
range of values. For example, you want to fit the parameters of a Weibull distribution 
that models the time to failure of a hip replacement such that the number of secondary 
hip replacements fits the observed one. 
The two parameters of the Weibull are constrained to be larger than 0. But remember, 
the optimization algorithm knows nothing about your model, and will happily propose 
negative values for the Weibull parameters. The result is mayhem: the Weibull 
function returns #NUM!, and so do your model and the loss function, and the 
optimization algorithm is thrown off course. 
You might think you can fix this in the loss function: if one of the Weibull parameters 
proposed is ≤0, then return a large penalty instead of #NUM!. However, this is a bad 
solution: it creates a discontinuity in your loss function (which, see discussion above, 
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should be smooth), and the optimization algorithms have a tendency to get stuck on 
discontinuities. 
A much better solution is to use a transformation on the number the optimization 
algorithm proposes such that the transformed number is never ≤0, and use the 
transformed number as the actual Weibull parameter. This lets the optimization 
algorithm roam freely without causing discontinuities in the loss function. 
There are basically two kinds of constraints: one-sided and two-sided11. These can be 
handled by two solutions, with some modifications to accommodate more general 
cases. Let x be the number proposed by the optimization algorithm, then the 
transformation y, subject to some constraint, will be:   

1. One-sided, y>0: � = 	
. 
2. One-sided, y>A: � = � + 	
. 
3. One-sided, y<A: � = � − 	
. 

4. Two-sided, 0<y<1: � =




����
 

5. Two-sided, A<y<B: � = � + �� − ��




����
 

These transformations take much of the sting out of constrained optimization. 
Strongly recommended. 

Iteration or Run 

On its Optimization tab Ersatz offers, in addition to the choice of four optimization 
methods and their options, the choice between Iteration and Run. These are very 
different options for very different purposes, and it is important to understand their 
fundamental difference. First: what do they do? 
 
The Iteration option 
With the Iteration option you can fit the results of a single iteration (see the 
OptimizationIt.xls example workbook, discussed above). You do a normal single run 
with the Ersatz functions drawing random numbers on each iteration, and the number 
of iterations determined by the ‘Number of Iterations’ box in the Calculation panel (or 
by a ErSetItno function in the connected Excel workbook).  
The difference is that after the Ersatz functions at each iteration have drawn their 
random number, they are switched off12 and the optimization routine kicks in. The 
optimization will do whatever you have instructed it to, and only after it returns the 
ErOutput functions will pick up the values for that particular iteration. And next 
Ersatz will start the next iteration. 
No questions are asked: the optimization is run and when it ends its result is 
summarily accepted. So you might want to put some ErOutput functions on various 
intermediate variables to check afterwards whether the optimization results make 
sense. 
The Iteration option has an additional option: a check box allows limiting the 
optimization routine to the first iteration only. When checked, the optimization is run 
for the first iteration, and the value obtained is returned for all subsequent iterations. 
This will be useful only in rather specific circumstances. I needed it when running an 
uncertainty analysis of a micosimulation model, where each iteration is an individual 

                                                 
11 Of course, theoretically you might have much more complicated constraints, but I haven’t seen those 
in real applications. 
12 Switched off in the sense that they will return the same previously drawn random number for as long 
as the optimization routine is busy.  
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and the multiple runs option is used to simulate a population. In that case, population-
wide uncertain parameters (so-called “second order uncertainty”) are drawn at the 
start of the run, and then kept constant during the run (typically using an 
ErConditional function that checks whether ErIteration returns 1, see the 
BreastCaMicroUnc example for this set-up). Under these circumstances, this “First 
iteration only” option allows to run an optimisation after drawing the population-wide 
value, and make the result apply to the whole population.  
 
The Run option      
With the Run option you can fit the results of a run (see the OptimizationRun.xls 
example workbook, discussed in the Examples section below). Since optimization is 
an iterative procedure, this means to do multiple runs, with the number determined by 
the optimization algorithm.  
Each run is a normal one, with the Ersatz functions drawing random numbers on each 
iteration, and the number of iterations determined by the ‘Number of Iterations’ box 
in the Calculation panel (or by a ErSetItno function in the connected Excel 
workbook). However, in order to get the run results into the loss function, you will 
need to use some of the Statistical functions (such as ErTotal, ErMean, etc., see the 
Ersatz Function Overview for the complete line-up), that return results at the end of a 
run. 
Please note that choosing this option may mean a lengthy calculation. In addition, it is 
difficult to predict how lengthy, because it is the optimization algorithm that, 
depending on the options you set, determines how many runs will be done.   
 
What to choose? 
What to choose depends on what you need to do. The two example workbooks give 
typical applications of each option. In OptimizationIt.xls a line is fitted to the results 
of random draws from three ErBeta functions to obtain an uncertainty interval around 
the estimated annual trend. So this option is useful when the link between your 
random functions input and the model’s outcome is not obtained by straight 
arithmetic, but involves such a fit procedure.13 
Please note that, from the viewpoint of the optimization algorithm, this is not noisy 
optimization: while the results from the ErBeta functions differ between iterations,  
the optimization has to deal with a single set of results, and ends before the next set of 
random numbers is drawn. 
In the OptimizationRun.xls workbook the outcome of a run, returned by an ErMean 
function, needs to be fitted to a target value. This would be a typical thing to do when 
you have developed a microsimulation model, where an iteration stands for an 
individual, and a run gives the outcome for a population by simulating a large number 
of individuals. 

                                                 
13 This particular problem could also have been tackled using an Excel macro to call the Excel Solver 
after each iteration. However, as mentioned in the section on Excel macros, this is slow: the 
macro/Solver approach takes about 6 times longer than the solution with the Ersatz minimization 
functions. You don’t have to take my word for it: the OptimizationIt workbook has a macro called 
‘solverfit’ included. If you change the equations in B8-D8 to refer to C12 & C13 instead of B12 & 13, 
check the ‘Execute macro after each iteration’ box in the Options|Macros and type ‘solverfit’ into the 
associated text box, you can run this yourself. Make sure that in Visual Basic the Solver is referenced 
(Choose Tools|References, and check the SOLVER box). Please note that the optimization performed 
in the OptimizationRun workbook cannot be done with any Solver and macro combination. 
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Since the outcome of a microsimulation model, and of an Ersatz run in general, is 
typically random, this option will usually result in noisy optimization, with 
consequences for the kind of method to use, see below.   

Four methods 

This section discusses the four optimization algorithms implemented in Ersatz, 
including the options they take. The reader should be aware that options with the 
same name between methods do not mean the same thing. For example, ‘Tolerance’ is 
an option that determines how hard the algorithm will try to achieve the loss 
function’s minimum, but that does not mean that the same value for this option results 
in the same level of precision. 
A general option all methods share is the number of restarts. As discussed above, it 
can be useful to restart the optimization at the result of a previous one, in an attempt 
to avoid having ended-up in a local minimum. The default number of restarts is 0 
(meaning no restarts), the maximum is 10 (but that is way over the top). If you want 
to use this feature, one or two restarts should do the trick (unless they don’t, but then 
more probably won’t help either). 
The first two are deterministic, the second two stochastic optimization methods. All 
are multivariate (i.e. take a vector of input variables) but they can be used for 
univariate optimization (i.e. take a vector of length 1) as well. In the subsequent 
section I will discuss when to use what. 
 
Quasi-Newton 
This is an implementation of the Broyden-Fletcher-Goldfarb-Shanno version of the 
Quasi-Newton (QN) algorithm, using the finite differences method to calculate partial 
derivatives. It is a deterministic method, based on (Press, Teukolsky  et al. 2007). 
Very briefly, this method is a generalization to multiple dimensions of a line 
minimization method that gathers information on the gradient of the loss function to 
make an informed guess on what to propose as the next vector of input values. If the 
loss function is reasonably approximated by a quadratic function, then the QN-
algorithm can be very fast indeed. However, it requires the loss function to be 
deterministic, and is therefore quite unsuitable for noisy optimization. 
Options: 

1. Tolerance. Default value: 0.01. Lower values will force the algorithm to use 
more tries to get closer to the loss function minimum and will require more 
loss function evaluations (and therefore more run time), and vice versa. 

2. Maximum tries. Default value: 500. This is the maximum number of loss 
function evaluations, and it set so high that it should never be reached. Putting 
in a much lower number will possibly reduce the number of function 
evaluations (and therefore run time), but when the algorithm is stopped by this 
criterion, it implies that its Tolerance criterion is not met. 

 
Down-hill Simplex 
The Down-hill Simplex (DS) method is a native multivariate optimization 
deterministic method due to Nelder & Mead. It uses a very simple algorithm to guess 
the next vector of input values, and, unlike the QN algorithm, does not use 
information on the gradient of the loss function. As a consequence, it usually requires 
more loss function evaluations and tends to take more time. But in my experience, 
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this depends very much on the actual optimization problem, and the difference with 
the QN method is often negligible and sometimes even in its favour. 
DS begins by using the N start values to set up a simplex: N+1 alternative input sets, 
where all values equal the original one except one which equals the original start 
value times 1 + the value of the initial simplex option. It then evaluates all the new 
combinations, picks the best one, and tries to improve by modifying it. And so on.  
The behaviour of the DS simplex as it crawls through our hilly landscape has been 
compared with how an amoeba would squeeze itself through narrow holes, and the 
implementation in Ersatz is based on the same-named algorithm from (Press, 
Teukolsky  et al. 2007). 
Because it relies on loss function evaluations only, the DS method is less vulnerable 
to noisy loss functions than the QN method. While it does not completely go off the 
rails for moderately noisy loss functions, it does not really know when to stop: as 
mentioned above, when it gets near the minimum, it tends to keep trashing around 
and only stops when it exceeds its maximum number of tries. 
This is because the standard stop criterion kicks in when the difference between the 
target and the model outcome value becomes sufficiently similar for the best and 
worst solutions. But this never happens when the model outcome keeps jumping 
around. 
Therefore I’ve implemented an additional stopping criterion for use with noisy 
optimization: when the simplex becomes sufficiently small (meaning that the amoeba 
is not going anywhere), this will cause a stop as well. 
Options: 

1. Initial simplex. Default value: 0.1. This sets the starting simplex. Increasing 
this number increases the number of loss function evaluations needed, 
decreasing it increases the likelihood that the algorithm gets stuck in a local 
minimum near the starting values. 

2. Maximum tries. Default value: 500. The same comments as for the QN 
maximum tries option apply. 

3. Tolerance. Default value: 0.01. See the QN comments here as well. 
4. Noisy optimization check box. Default value: unchecked. When checked, the 

additional stopping criterion described above becomes active. 
5. Noise tolerance. Default value: 0.0001. Enabled only when the Noisy 

optimization check box is checked. Lower values will cause the additional 
stopping criterion to kick in later, and vice versa. 

 
Simulated annealing 
Simulated annealing (SA) is a stochastic optimization method, that has been 
successfully applied to very hard problems. However, most of the action has been in 
the field of combinatorial optimization (for example, the travelling sales person 
problem), and much less in the continuous function optimization we need. The 
algorithm implemented in Ersatz is based on a stochastic variant of the DS method 
described above (Press, Teukolsky  et al. 2007). 
SA derives its name from an analogy: annealing is the slow cooling of liquid metals 
which allows all atoms to find their place in a crystal structure, which represents the 
lowest possible energy state of the system (and also the configuration that is 
strongest). The method sports options such as ‘starting temperature’ and ‘cooling 
factor’ that play on this analogy. 
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While the deterministic DS algorithm always takes the down-hill direction, the SA 
variant will randomly go up-hill as well, with step sizes depending on the temperature 
at the time. The process starts at a high temperature, with big random jumps through 
the hilly landscape for a maximum number of tries or when it has reached the 
precision set by the tolerance level, whichever comes first (it will mostly be the 
maximum number of tries, especially when the temperature is still high). Then the 
cooling factor is applied to the temperature, and the process repeats. When the 
temperature hits 0, the algorithm will end. The algorithm remembers the best 
outcome ever, and as it ends will report that. 
The maximum number of tries is per annealing level, so the maximum number of loss 
function evaluations equals the maximum number of tries times the number of 
annealing levels, the latter depending on the starting temperature and cooling factor, 
but this product will generally be very large. In other words, this method requires 
considerable time. 
Options: 

1. Initial simplex. Default value: 0.1. Inherited from the DS method, but the 
stochastic nature of the SA algorithm makes this parameter much less 
important. 

2. Maximum tries. Default value: 500. See the discussion above, lowering this 
value will do much to speed up the optimization, but it will increase the 
probability to end up in a local minimum. 

3. Starting temperature. Default value: 10,000. Higher values will cause the 
algorithm to make wilder random jumps, and will also cause, given a cooling 
factor, to increase the number of annealing levels. Both will increase 
calculation time, but decrease the probability of getting stuck in a local 
minimum. 

4. Tolerance. Default value: 0.01. Inherited from the DS algorithm, but of less 
importance here because the stochastic nature will make the maximum 
number of tries the more likely stopping criterion. 

5. Cooling factor. Default value: 0.1. A smaller cooling factor will increase the 
number of annealing levels, and therefore the total calculation time, but will 
decrease the probability of ending up in a local minimum. And of course vice 
versa. 

 
Cross-entropy 
The cross-entropy (CE) method, due to Rubinstein and Kroese, is a rather new kid on 
the block of stochastic optimization.(Rubinstein and Kroese 2008) It originated in 
rare event estimation, but soon proved useful for optimization as well. Like the SA 
method, most applications seem to be in the field of combinatorial optimization, but 
the method allows continuous function optimization as well. 
For this latter application, a number of Normal distributions equal to the number of 
input values into the optimization are defined with means the starting values and  
sufficiently large standard deviations. From these Normal distributions, a sample of 
values is randomly drawn, and the loss function is evaluated for each of them. Then 
the proportion best results (determined by the Proportion elite option) is used to 
calculate a new mean and standard deviation, and with these another sample is drawn 
and evaluated. The process is repeated until it runs out of the maximum number of 
tries or the average coefficient of variation reaches a threshold minimum, defined by 
the variance threshold option. 
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It is a surprisingly simple algorithm (also to implement), with a high degree of face 
validity, and in my experience it works rather well. However, as with all stochastic 
optimization, computational costs are high. While the literature on the CE method by 
Rubinstein and Kroese makes much work of the small number of iterations needed to 
get to the minimum, it ignores that for each iteration the method needs a number of 
loss function evaluations equal to the sample size. Given that the sample size should 
not be small, this adds up. 
Options: 

1. Proportion elite. Default value: 0.1. This is the proportion of the sample size 
with the best results used to calculate the mean and standard deviation for the 
next iteration. A larger proportion is more conservative, leading to more 
iterations, but less probability to get stuck in a local minimum. 

2. Coefficient of variation. Default value: 1.0. This determines the standard 
deviation of the Normal distributions (standard deviation = mean times 
coefficient of variation). A higher value will cause the algorithm to need more 
iterations, with a lower probability to return a local minimum. 

3. Sample size. Default value: 150. This is the number of randomly drawn 
parameter vectors the algorithm will evaluate at each iteration. A larger 
number will need more loss function evaluations per iteration, but decrease 
the number of iterations needed. 

4. Maximum tries. Default value: 100. Initially, when the standard deviations are 
still large, this is the most likely stopping criterion, but one hopes that in the 
end the variance threshold will be the one. A larger value increases the 
probability that the variance threshold will be the stopping criterion, but will 
cause a longer calculation time, and vice versa. 

5. Variance threshold. Default value: 0.01. If the average coefficient of variation 
of the current set of Normal distributions is below this value, the algorithm is 
considered to have reached the minimum. A lower value will cause longer 
calculation time, but higher precision. And, as always, vice versa.   

When to use what? 

There are few hard and fast rules about when to use which method and with what 
options. And if there is any area in computation where the old economic saying of 
“there is no such thing as a free lunch” applies, it is in optimization. You can try to get 
better results, but always at a cost, and with marginal costs rising steeply. So a 
number of rules of thumb might come in handily. 

• Where possible, use the deterministic algorithms (QN & DS). They use far 
less computation time than the stochastic ones. 

• If you need to use the stochastic algorithms, try the CE method first. The SA 
algorithm seems to spend far more time thoroughly searching through areas 
where obviously no minimum is to be found (perhaps, you can never be sure, 
there is a bug in the implementation). 

• Use the stochastic algorithms when there is evidence of local minima. Getting 
different outcomes from your deterministic algorithms for different starting 
values is strong evidence of the existence of local minima.  

• The probability of local minima steeply increases with the dimensionality of 
the problem (which equals the length of the starting vector). Be aware, I’ve 
seen the deterministic algorithms getting nowhere on problems with a 
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dimensionality as low as 6. So you might at least want to try one of the 
stochastic methods once if you have a problem of high dimensionality. 

• Never use the QN method for noisy optimization. Use instead the DS method 
with the noisy optimization option checked, or else the stochastic methods (SA 
& CE). Or use a combination: first the CE method to get in the neighbourhood 
of the global minimum, and next the DS method  

• With the ‘Run’ option you are most likely to deal with noisy optimization, 
with the ‘Iteration’ option you are not. 

• Experiment with the tolerance parameters. If the optimization method is trying 
to achieve a precision way beyond what is useful for your application, a 
reduction in the tolerance option will greatly speed up the process.  

Basically, what I’m trying to say here is that you should not rely on a single method 
and its default parameters for all problems. Optimization benefits by tinkering: try a 
different method, or change the options, or both. The four methods and their options 
offered by Ersatz give you ample opportunity. 



 

Ersatz User Guide 53

Documentation 

Examples 

Introduction 

The Ersatz installation comes with a number of example Excel workbooks. These 
come in two categories: the purpose of the first one is give an implementation 
example of each Ersatz function; the purpose of the second category is to illustrate 
some more general techniques, in particular multiple runs and microsimulation. These 
workbooks use a cost-effectiveness analysis loosely based on the example of 

trastuzumab (Herceptin) for early breast cancer. In addition there is a workbook 
illustrating the use of Ersatz for probabilistic bias quantification. 
All example workbooks are accessible through the Ersatz entry in the Windows Start 
menu, and through the Ersatz ‘Help|Example spreadsheets’ menu. Where they are 
located on your harddisk is difficult to say: it depends on your Windows version, your 
privileges on the PC, and possible changes to the proposed default directories that you 
may have made during installation. Details can be found in the section Installation 
issues of the Technical appendix of this guide. 
Please note that the example workbooks are not protected: any changes that you make 
can be saved. If you want to preserve the original example workbooks but also 
experiment with them, you should first make copies of them to experiment with, for 
example by using ‘Save as’ to copy them to your standard Excel workbook directory. 
Of course you can always revert to the original example workbooks by re-installing 
Ersatz. 
Below is a brief description of each of the example workbooks. All example 
workbooks can be run, and contain, where appropriate, ErOutput functions to inspect 
the results in Ersatz. The examples should be studied with the Ersatz Function 

Overview document at hand. 

FunctionLineup 

This workbook contains examples of most of the functions that Ersatz adds to Excel. 
Exceptions are mostly rather more complex functions such as the component 
functions in the special ComponentFunctions workbook. 
The FunctionLineup workbook has several worksheets: 

• StandardDistributions contains the normal random distribution functions 
(including the Normal). 

• ErEmpirical is devoted to the two modes of this function: discrete and 
continuous. 

• ErSurvival gives examples of the ErSurvival function (including the effect of 
having survived to a certain age) and the ErSurvival2 function, which allows 
using a single uniform random draw to get survival durations from different 
survival data. See also the Survival123 and BreastCaMicro example 
workbooks for the use of these functions. 

• SpecialFunctions contains examples of the special (i.e. non-random) functions, 
such as ErIteration. 

To run this workbook, start Ersatz, set the number of iterations and press Calculate. 
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Output2Workbook 

In most cases, outputs from your workbook are picked-up by ErOutput functions, and 
transferred and displayed in the Ersatz executable. However, in some circumstances it 
is more convenient or even necessary to get the outputs into the workbook itself. This 
example workbook illustrates the use of functions that allow just that. There are two 
worksheets:  

• StatisticalFunctions implements the Ersatz statistical functions that return 
summary statistics at the end of a run. Basically, these are the outputs that you 
get in the Ersatz Summary outputs tab. Not present here is ErCorrelation, 
which can be found, among others, in the ComponentFunctions workbook. 

• The DataFunctions worksheet implements the ErData and ErDataArray 
functions. The former gives the value of an output at a specific iteration, the 
latter at a range of iterations, starting at the first. Note that the ErDataArray 
function returns #NUM! before the workbook is run. 

• There is also an ErRunDataArray function for use with the multiple run 
option. Please consult the BreastCaMarkovMC workbook for an example 
implementation. 

Please note that these functions are not available in the trial version of Ersatz, and that 
this workbook is not included in the trial download. 
 

ComponentFunctions 

As described in the Ersatz Function Overview document, the Ersatz component 
functions implement situations where several random numbers need to be drawn that 
require some coordination. An example is correlated random draws from various 
distributions. Ersatz implements this using component functions that are linked to a 
corresponding master function. 
Setting up such a system is decidedly more complex than the use of the standard 
random functions, and therefore this workbook contains a separate worksheet for each 
of the six component functions. When you first start using these functions, you may 
want to copy the example into your own spreadsheet, and work from there. 
A warning: when implementing a set of component functions and their master 
function, make sure the checkbox ‘Show mean values while not running’ in the Excel 
box on the Ersatz Settings tab is checked. If not, you may get rather puzzling #NUM! 
errors. 

• The Nonparametric worksheet contains an example with 10 records, each of 
three fields. The data is hypothetical, but could be the results from 10 
respondents that assessed disability weights for three diseases. The outcome of 
interest is the average disability weight (and its variance) for each disease. 

• The Randomisation worksheet example is an implementation of a 
randomisation test to see whether the observed downward trend in 
prescriptions for anti-hypertensives could be due to stochastic variation 
(outcome: extremely unlikely). 

• The Multinomial distribution is a generalisation of the Binomial to multiple 
categories. Each marginal distribution is Binomial, but the sum over the 
categories is always equal to the total N. An essential distribution when 
modelling, for example, decision trees with nodes that have more than two 
branches. 
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• The Dirichlet distribution is a generalisation of the Beta to multiple categories. 
Each marginal distribution is Beta, but the sum over the categories is always 
equal to 1. An essential distribution when modelling, for example, prevalences 
or transition probabilities that have more than two categories. 

• The CorrNormal worksheet gives two examples, one using a covariance and 
one using the equivalent correlation matrix. Note that changing the input 
correlations can easily lead to an invalid covariance/correlation matrix (just 
change the cov(N1,N3) to -0.2): in that case Ersatz will not run and display a 
fatal error. See the section on Valid correlation matrix in the Random numbers 
topic for more information.  
The output correlations are examples of the ErCorrelation statistical function, 
that will give a meaningful result after a completed run only. 

• The RankCorr worksheet shows how to obtain rank correlated random draws 
from arbitrary functions, in this case a Gamma, a Weibull, and a Poisson. The 
remarks in the previous dot point on valid correlation matrices and the 
ErCorrelation function apply here as well. 

To run this workbook, start Ersatz, set the number of iterations and press Calculate. 

OptimizationIt 

This workbook illustrates the Iteration option of the Ersatz Optimization algorithms. 
Please refer to the section on Optimization above for a description of this example. 

OptimizationRun 

This workbook illustrates the Run option of the Ersatz Optimization algorithms (refer 
to the section on Optimization above for a description of the Iteration and Run options 
and other concepts mentioned here). This is a very simple optimization problem (in 
fact, it is not an optimization problem at all because it is easy to derive its solution 
analytically, see the E column), but it serves to illustrate the Run option, which will 
almost always, as in this case, imply noisy optimization. 
The task is to find the two parameters for a Beta distribution such that it will return a 
specific mean (set to 0.77 in the example, cell B17) while the sum of the two also has 
a specific value (set to 123 in the example, cell B18). This can be interpreted as 
obtaining parameters such that the Beta distribution returns a specific prevalence, 
given a population size (see the section on Good Modelling Practice if you don’t 
understand this). 
The ErMinimize function is entered as an array formula in cells B8-9, taking as its 
starting values the range C8-9. Note that the ErMinimize function works on log-
transformed values for the ErBeta function because the Beta distribution requires both 
parameters to be > 0, see the subsection on Constrained optimization in the 
Optimization section above. 
The ErBeta function itself is in cell B11, with the exponentiated parameters from the 
ErMinimize function in cells B12-13. The target prevalence and population size are in 
cells B17-18. The realized mean value from the draws of the ErBeta function is 
returned in cell C17, using an ErMean function. The realized population size is simply 
the sum of the two Beta distribution parameters (cell C18). 
Finally, the loss function is in cell B20, consisting of squared differences functions for 
both prevalence and population size. Note that the squared difference for the 
prevalence is multiplied with twice the population size of cell B18: this is to scale the 
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parameters for the loss function to similar size. The ErMinimizeResult function picks 
up the value of the loss function in cell B22. 
To run this example, check the Optimization box in the Ersatz section, type the 
ErMinimize function name (’fit2’) in the designated box, choose the run option and 
one of the optimization methods, and press Calculate. Warning: depending on method 
and options, this may take anything between a minute and many hours.  
This workbook illustrates the following issues for the use of the Run option (and for 
noisy optimization in general): 

1. Do not use the Quasi-Newton method for noisy optimization. If you try this, 
you will see it goes completely off the rails, and gives up after a short while, 
returning a clearly useless result. 

2. The Down-hill Simplex method does a lot better: it moves towards the 
minimum, but unless you check the ‘Noisy optimization’ box, it will keep 
thrashing around that minimum until it runs out of tries. If you do check that 
box, it will return quickly with a good result. Please note that this method only 
works when the loss function is only moderately noisy, but in that case it is the 
most efficient choice. 

3. The stochastic methods (Simulated Annealing and Cross-Entropy) both can 
handle this case of noisy optimization. But both, and in particular the 
Simulated Annealing method, take a lot of time. 

CorrMultivariate 

This workbook gives example implementations of the correlated multinomial and 
Dirichlet distributions. In addition, it shows how to obtain a similar effect for 
multivariate Normal distributions. 
As with the Ersatz component functions, correlated multivariate distributions require 
coordination between distributions, and a similar set up has been implemented for 
these correlated multivariate distributions. The difference is that now three kinds of 
functions collaborate: a single master function and input and output functions for each 
of the correlated distributions. 
Again as with the component functions, setting up such a system is decidedly more 
complex than the use of the standard random functions, and therefore this workbook 
contains a separate worksheet for each distribution. When you first start using these 
functions, you may want to copy the example into your own spreadsheet, and work 
from there. Also consult the Ersatz Function Overview document for implementation 
details. 

• The CorrMultinomial worksheet contains an example of three multinomial 
distributions, each with five categories. There is also a correlation matrix, all 
data is hypothetical. The master function ErMultinomialCorr picks up the 
correlation matrix and the number of correlated distributions as parameters. 
Linked to the master function are three ErMultinomialCorrIn input functions, 
each picking up the corresponding input numbers and its distribution number 
as parameters. Finally, there are three ErMultinomialCorrOut functions, each 
linked to its corresponding ErMultinomialCorrIn function, and taking its 
distribution number as the second parameter. These ErMultinomialCorrOut 
functions are entered as ‘array functions’, see the note in the Ersatz Function 

Overview document if you do not know what Excel array functions are.   
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• The CorrDirichlet worksheet implements the same data as the 
CorrMultinomial worksheet, and the set up is, apart from the function names, 
identical. 

• When the multivariate distribution is set up using a number of marginal 
distributions and a correlation matrix, as with the multivariate Normal, a 
similar effect of two correlated multivariate distributions can be achieved by 
specifying a combined appropriate correlation matrix for all distributions 
involved. The CorrNormal worksheet shows how to do this.  
Please note that the requirement for the correlation matrix to be valid (positive 
semi-definite) puts strong restrictions on the values in the correlation matrix. 
You should use the Ersatz option to check validity and, if needed, replace it 
with the valid matrix Ersatz suggests (Options|Correlation). 

ConditionalStore 

Ersatz has functions that allow storing workbook values in memory, and retrieving the 
values at a later point. This workbook contains an example implementation of the 
ErCondStoreArray and ErCondRetrieveArray functions, which allow storing and 
retrieving arrays of numbers, prompted by a Boolean parameter. 
The example is based on a scenario where a number of interventions for a particular 
health problem are available, each having an effect size and cost. But after the first 
intervention is implemented, the second one will have a smaller effect because part of 
the problem is already resolved by the first intervention. This is modelled by making 
the potential impact fractions (PIFs) multiplicative. 
To run this model, you should check the ‘Multiple runs’ options, and set the number 
of runs to 100. Please note that this example also uses the ErDataArray and 
ErRunDataArray functions which are not available in the trial version and that this 
workbook is not included in the trial download. 

BreastCaMarkovSC 

This workbook implements a Markov model of breast cancer incidence and survival, 

with an evaluation of trastuzumab (Herceptin) which improves survival of a 
specific sub-group of breast cancer patients: those with her2-positive tumours. 
Survival is based on a South Australian follow-up study, I fitted a lognormal 
distribution with a proportion cured to this data (see the Data & Results worksheet). 
From the modelled survival an annual excess mortality since year of incidence is 
calculated. The effect size of trastuzumab (0.55, cell L4) is applied to this excess 
mortality for 5 years in full (based on a meta-analysis), after that it is assumed to 
attenuate (see column O). 
Incidence is the number of breast cancer cases in Australia in 2003 by age times 0.2: 
the proportion of her2-positive cases. The model is single cohort (that’s what the SC 
stands for): you select an age group (cell F19), and the model calculates the life years 
lived, costs, and incremental costs per life year gained (more generally known as 
‘incremental cost-effectiveness ratio’, or ICER) for that age group. Note the use of the 
Excel Index function (in worksheet Base, column B) to pick up the correct ‘all other 
causes’ mortality, given the age at incidence. Also note the steeply increasing ICER 
by age. 
Uncertainty is implemented as an ErRelativeRisk function on the effect size (cell L4) 
and an ErGamma function for the costs of disseminated/terminal disease (cell L9). 
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Cost of primary treatment other than trastuzumab is ignored, because assumed to be 
the same for both baseline and intervention.  
To run this workbook, start Ersatz, set the number of iterations (say 2000), select an 
age group (cell F19), and press Calculate. 

BreastCaMarkovMC 

The BreastCaMarkovSC workbook calculates the cost-effectiveness for the various 
incident age cohorts, but as a rule the question is not what the cost-effectiveness is for 
a specific age group, but for the whole population. You could use the 
BreastCaMarkovSC workbook to calculate a central estimate by totting up the results 
of each age group, but doing a proper uncertainty analysis that way would be a real 
hassle. 
The BreastCaMarkovMC workbook (MC for multiple cohorts) solves the problem by 
using the Ersatz multiple run option, see the section on Multiple runs above. This 
workbook is largely identical to the BreastCaMarkovSC workbook, with the 
following changes: 

1. Selecting the age group (cell F19) is no longer done manually, but by an 
ErIteration function. When the number of iterations is set to the number of age 
groups (=14 in this case), each run will cycle through the age groups one by 
one. 

2. Cell F21 contains an ErSetItno function, with the number of age groups (cell 
F17) as parameter. This function sets the number of iterations Ersatz will do to 
the correct one. 

3. Cell F23 contains a formula that will return TRUE if the selected age group 
equals 1, and FALSE otherwise. 

4. This boolean is used to make sure that for all ages the same randomly drawn 
effect size and disease costs is used. The ErRelativeRisk (cell L4) and 
ErGamma (cell L9) functions are now embedded in an ErConditional function 
which takes the boolean of cell F23 as its first argument. When TRUE 
ErConditional returns the currently drawn random value, when FALSE it 
returns the same value as it did at the previous iteration. 

5. In cells G27..29 an ErCondStoreArray and corresponding 
ErCondRetrieveArray function are used to sum over ages. Note that the 
ErCondRetrieveArray function returns #NUM! until the model is run. These 
functions sum up the difference in life years and costs over the age groups. 
Cell G30 calculates the ICER over all age groups. 

6. Cells H28, 29, & 31 now have ErRunOutput functions, the special output 
functions for multiple runs that store the last input value of each run. 

7. Similarly, the ErSensInput functions of cells P4 and P9 have been replaced by 
their multiple run equivalent ErRunSensInput. 

I’ve described the differences between the BreastCaMarkovSC and -MC workbooks 
in detail to drive home the point that you can start by developing a single cohort 
model, and then easily convert this to a multiple cohort model using the Ersatz 
functions mentioned here and in the topic on Multiple runs. 
To run this workbook, start Ersatz, check the ‘Multiple runs’ and ‘Use multiple runs 
input/output functions’ boxes on the Ersatz section of the Settings tab, set the number 
of runs (say 2000), and press Calculate. It will take a bit of time (1 minute, 20 seconds 
on my laptop). 
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Survival123 

This workbook implements examples that are discussed in the Microsimulation 
section of this guide. Briefly, Survival123 compares three ways of modelling 
empirical (as opposed to parametric) survival, with the Ersatz ErSurvival function as 
the preferred way.  
To run this workbook, start Ersatz, set the number of iterations and press Calculate. 

BreastCaMicro 

This workbook is also mentioned in the section on Microsimulation, in particular on 
reducing randomness. It implements the same model of breast cancer incidence and 
survival as the two Markov models discussed above, but now uses the technique of 
microsimulation.  
Incidence is by age, and when a woman becomes incident first an age at death from 
all other causes is drawn, conditional on having survived until the age at incidence 
(using ErSurvival). Next a breast cancer survival time is drawn (again using 
ErSurvival), using the same fitted lognormal excess mortality as in the Markov 
models. The age and cause of death of the woman is then determined by the one that 
comes first: all other causes or breast cancer. 
Also the same intervention is implemented that models the decrease in excess 

mortality due to trastuzumab (Herceptin), with a different survival curve and less 
breast cancer deaths as a result. 
The difference between the BreastCa1 and BreastCa2 worksheets is that in the latter a 
randomness reduction technique is illustrated, see the corresponding section on 
‘Combating randomness in microsimulation’ above.  
The workbook also implements the ErSetItno function (BreastCa1, H19). This 
function sets the number of iterations Ersatz will do equal to the number of women in 
the microsimulation. Remember: in microsimulation each iteration stands for an 
individual. 

BreastCaMicroUnc 

This workbook implements the same model as the Breastca2 worksheet in the 
BreastCaMicro workbook. The difference is that it is now set up to run an uncertainty 
analysis for this model. As with the BreastCaMarkovMC workbook you need to use 
the Multiple runs option for at least 1000 runs. 
The difference with the Breastca2 worksheet is that the effect size and cost of 
disseminated/terminal disease now both have random functions (the same as in the 
BreastCaMarkovMC workbook). 
To run this example, start Ersatz, check the ‘Multiple runs’ and ‘Use multiple runs 
input/output functions’ boxes on the Ersatz section of the Settings tab, set the number 
of runs (say 2000), and press Calculate. Warning: this will take time (1 hour, 20 
minutes on my laptop). 

ResinBias 

This workbook implements the calculations described in a draft paper (Barendregt 
and Blakely Draft). The work was done in response to earlier work on probabilistic 
bias quantification by Fox, Lash, and Greenland (Fox, Lash et al. 2005). They used 
data from a case control study on the risk of lung cancer from exposure to resin to 
illustrate the method of probabilistic bias quantification, and the same data is used in 
this example. 
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Using assumptions on sensitivity and specificity, a bias corrected dataset is calculated 
from the observed data. From this bias corrected dataset two-by-two tables are 
calculated for cases and controls. We assumed these two-by-two tables to have 
correlated Dirichlet distributions, scaling the numbers such that the standard 
deviations of the sensitivities and specificities are similar to the ones obtained by Fox 
et al. 
In a final step we calculate the probabilistic bias corrected dataset, and combine the 
uncertainty of the bias correction with the sampling uncertainty to a single uncertainty 
interval. Like Fox et al we do the calculations for non-differential and differential 
misclassification. By using the correlated Dirichlet distribution to produce the 
probabilistic bias corrected datasets, we obtain much narrower combined uncertainty 
intervals than Fox et al. 
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Error messages    

Fatal errors 

The following error messages are fatal in the sense that Ersatz will not run, and no 
output will be produced. I’ve grouped individual error messages in, hopefully, useful 
categories where appropriate.  
 

1. “There are duplicate XX function names in the connected workbook. Run 
aborted.” and: 
“There is an empty string as an XX function name in the connected workbook. 
Run aborted.” 
 
Ersatz has a number of functions that require you to name them. Moreover, 
Ersatz puts requirements on these names. The first is that within each function 
category the name should be unique, the second that empty strings as a name 
do not qualify. If you transgress these requirements you will get these error 
messages. 
In these error messages XX can stand for one of the following: Eroutput, 
ErRunoutput,  ErMultinomial, ErNonparam, ErDirichlet, ErSensinput, 
ErRunSensinput, ErCorrNormal, or ErRankCorr. 
The remedy is simple: make sure your functions have different names (first 
case) and none of them is an empty string (second case).  
Please note that when more than one Excel workbook is open, Ersatz will, 
contrary to appearances (only the name of one of them will be showing in the 
title bar), be connected to all14. If you have, for example, two versions of the 
same workbook open simultaneously, you will get the ‘duplicate names’ error 
when they have the same named functions. You will need to quit the other 
workbook(s) in order to run Ersatz. 
 

2. “An error occurred while executing an Excel macro”. 
 
This error occurs when Excel runs into a problem while executing a macro 
that you call from Ersatz. The remedy is to make sure that your Excel macro is 
functioning correctly. This may sound like a cheap answer, but Ersatz really 
cannot know what a macro you want it to call is up to, so this error is outside 
its remit. 
 

3.  “An unknown error occurred”. 
 
This error can occur when some Ersatz functions show #NUM! or #VALUE! 
errors before you click the Calculation button. In that case the remedy is 
simple: make sure all errors are eliminated before running the workbook.  See 
the section on Trouble shooting below. 
If all functions are fine and you still get this error, it is potentially serious. It 
may occur because Excel has become unstable, or Windows itself has. The 
first remedy is to quit Ersatz and Excel and try again. If that doesn’t work, 

                                                 
14 This is not a design objective, but there seems to be no way to avoid this Excel behaviour. 
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reboot your PC. If the problem persists, contact EpiGear (info@epigear.com). 
 

4.  “Run cancelled by user”. 
 
Not really an error message because you clicked the ‘Cancel’ button during a 
run. 
 

5. “ErFixed reports a number index < 1”. 
 
Not sure why this error message is here, because it seems more appropriate in 
the non-fatal category. Anyway, you’ve fed an ErFixed function a second 
parameter that is < 1, which is a no-no. 
 

6. “ErTruncate does not have an eligible embedded Ersatz random function. Run 
aborted”. 
 
Not all Ersatz functions can be subject of an ErTruncate function, and this 
error occurs when you’ve picked one outside the list. See the Ersatz Function 

Overview topic on the ErTruncate function to see which functions are 
permitted.  
 

7. “An ErCorrNormal function reports an invalid correlation matrix. Run 
aborted”. 
”An ErRankCorr function reports an invalid correlation matrix. Run aborted”. 
 
The ErCorrNormal and the ErRankCorr functions require either a correlation 
or a covariance (ErCorrNormal only) matrix. These matrices need to be 
positive (semi) definite, if they are not these error messages occur. See the 
topic on correlated random draws in this Guide to remedy this.  
 

8. “Run-time Er(Run)output or Er(Run)Sensinput function is not accounted for. 
Run aborted”. 
 
One or more of the mentioned functions shows a non-numeric outcome (like 
#VALUE!) when Ersatz is not running, but gets a valid numeric outcome as 
soon it does. Since Excel does not call a function when its result is not valid, 
Ersatz does not find it when it takes stock before the run, but then 
unexpectedly finds it during the run. Remedy: see which of your functions has 
this problem, and fix it. 
 

9. “An ErRankCorrCom function does not have an eligible embedded Ersatz 
random function. Run aborted”. 
 
Most but not all of the Ersatz random functions can be used with the 
ErRankCorrCom function. See the Ersatz Function Overview topic on the 
ErRankCorrCom function to see which functions are permitted.  
 

10.  “This is the workshop version of Ersatz, which has a maximum of 5 input 
functions. Run aborted”. 
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Students in the cost-effectiveness workshop at the School of Population 
Health, University of Queensland, get a free but limited copy of Ersatz. If you 
exceed the function number limit, this message will be shown. Remedy: either 
limit the number of input functions, or buy the fully licensed version 
(www.epigear.com). 

 

Non-fatal errors 

In addition to fatal errors there are also non-fatal ones: Ersatz will run, and output will 
be produced, but probably not for all output variables: some or all of them will show 
up as “NaN” in the summary output. “NaN” stands for “not a number”, and it implies 
that either an input function has been fed a parameter value outside its range, or that 
your calculations made Excel throw a fit, such as divide by zero. The error messages 
will be displayed in the Message window (choose View|Messages), and Ersatz will 
warn the user when there are any. The messages specify the iteration and the function 
that encountered a problem. 
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Trouble shooting 

Sometimes the combination of Ersatz and Excel will not behave as the user expects, 
with a frustrated user as a consequence. In this section I try to pre-empt some of the 
situations where this might occur by explaining what is going on and offering a 
solution. Most of this is based on user experiences in my own work environment 
(including myself). I am happy to hear of any other potential conundrums: if you have 
any, please email them to info@epigear.com and I will either try to solve the issue or 
add them to this list. 
  

1. The calculation button is disabled. 
 
Ersatz is probably not connected to a spreadsheet. If this is the case, its title 
bar will read ‘Not connected’. This will occur when Excel is not running, or 
when you had more than one instance of Excel running and you quit one of 
them. If Excel is not running, start it and open the spreadsheet you want to 
work with. Then choose ‘File|Connect to Excel’ in Ersatz. If that doesn’t 
work, you may have to quit Ersatz and Excel and start anew. 
Please note that if you have more than one instance of Excel running, and you 
quit one, Ersatz will become disconnected. Establish a new connection by 
choosing ‘File|Connect to Excel’. 
 

2. The Ersatz functions are not recognised by Excel (they show the #NAME? 
error). 
 
If you see this error on just a single or a few Ersatz functions, while other 
Ersatz functions are fine, you most likely made a typo in the function name. If 
you are unsure how a particular function name is spelled, use the Excel 
function wizard: all Ersatz functions are available in the category ‘Ersatz’. 
If all Ersatz functions show this error, and you are confident that they are 
spelled correctly, most likely Ersatz is not properly (or not at all) installed. 
Check whether the Ersatz add-in is listed and active (Excel 2003 and earlier: 
Tools|Add-ins; Excel 2007: Office Button|Excel Options|Add-ins|Go). Make 
sure the add-in is listed and the checkbox next to its name is checked. 
If the add-in is not listed, you can try to use the ‘Browse’ button of the Excel 
Add-in Manager to add it to the list, but most likely something went wrong 
during installation (e.g. you had Excel running while installing Ersatz). 
Remedy: quit Excel, and install Ersatz. 
 

3. The Ersatz functions are recognised by Excel, but not correctly (they show the 
#VALUE! error). 
 
If you see this error on just a single or a few Ersatz functions, while other 
Ersatz functions are fine, you most likely made an error in the number of 
parameters the function takes. If you are unsure about the parameters of a 
particular function, use the Excel function wizard: all Ersatz functions are 
available in the category ‘Ersatz’. 
Occasionally a workbook that was previously OK will all of a sudden return 
these #VALUE! errors for all Ersatz functions. It seems that for some reason 
on these occasions Excel unregisters the Ersatz functions. You can check for 
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this condition by using the Excel function wizard: if it lists the Ersatz 
functions, but without their parameters (e.g. ‘ErNormal()’), this is what 
happened. 
Remedy: uncheck the Ersatz add-in in the Excel Add-in Manager (Excel 2003 
and earlier: Tools|Add-ins; Excel 2007: Office Button|Excel Options|Add-
ins|Go) and click OK, and then open the Add-in Manager again check it again: 
this will force Excel to register the Ersatz functions. If you then force a 
recalulation of the workbook by entering a cell containing an Ersatz function 
for editing and then hit ‘return’, the errors should go away. 
 

4. An Ersatz function returns #NUM!. 
 
You most likely made an error in the value of the parameters the function 
takes. For example, if you enter ‘ErNormal(4,-1)’ you will get this error 
because the standard deviation of the Normal distribution needs to be > 0. If 
you are unsure about the values the parameters of a particular function can 
take, use the Excel function wizard: all Ersatz functions are available in the 
category ‘Ersatz’, and help is given on the parameter values they can take. Or 
look up the function in the Ersatz Function Overview.   
 

5. Ersatz runs but gives no output. 
 
There are a number of situations where this will occur: 

a. You forgot to put in ErOutput functions. The remedy is obvious. 
b. You did put in ErOutput functions, but you do not feed them a valid 

output value. For example, if you link the second parameter of the 
ErOutput function to a cell containing text, this will happen. The 
ErOutput function will, by the way, return #VALUE!.  
Remedy: make sure you link the ErOutput functions to valid numerical 
values. 

c. You did put in ErOutput functions, but you have checked the ‘Multiple 
Runs’ and ‘Use multiple run in/output functions’ checkboxes. When 
you check these options, Ersatz expects ErRunOutput instead of 
ErOutput functions. 
Remedy: replace ErOutput with ErRunOutput functions. 

d. You did put in ErRunOutput functions, but did not check the ‘Use 
multiple run in/output functions’ checkbox. 
Remedy: if you need ‘Multiple Runs’, check the the ‘Use multiple run 
in/output functions’ checkbox. Otherwise replace the ErRunOutput by 
ErOutput functions. 
 

6. Ersatz used to run fine, but now all of a sudden requires me to apply for a 
release code. 
 
This may happen when you change the PC configuration, for example by 
installing a new motherboard. Remedy: apply for a new release code. 
This issue may also occur with illegal Windows software, see Known Issues. 
 



 

Ersatz User Guide 66

Known issues 

No software is without bugs, and that is undoubtedly true for Ersatz (and for Excel, 
for that matter). Things can go wrong, and once they have done so, the software may 
have become unstable and start to produce error messages whatever you do. In such 
cases it is often advisable to quit the software altogether and start anew.  
In particular, when Ersatz has given error messages like ‘Access violation’, ‘Invalid 
floating point operation’, or ‘Range check error’, things have seriously gone wrong 
and a restart is often required. If the problem is reproducible (i.e. if it occurs 
predictably with some workbook and some calculation), I am very interested in 
receiving a description of the problem (if it is not one listed below), if possible with a 
copy of the offending workbook. Please send email to info@epigear.com. 
 

1. The Partial Rank Correlation multivariate sensitivity option is not very robust 
and can produce unhelpful error messages such as ‘Invalid floating point 
operation’. At this point I don’t have a clue why this is (because I have not 
looked into the problem). The Pearson, Spearman, and Kendall’s tau options 
are robust. Currently not very high on the priority list. 
 

2. Non-English Windows versions can cause problems. Some local versions of 
Windows use a comma as decimal separator, and consequently expect a 
semicolon instead of a comma as the separator of the parameters in the Ersatz 
functions. No other issues are known at this point in time. 
 

3. The copy-protection scheme of Ersatz gets thrown off (or, if you like, works 
overtime) on at least one non-official (read: illegal) Windows version. Ersatz 
will repeatedly think it is running on a new computer, and require you to 
obtain a release code before it will run. Of course EpiGear will not provide 
you with new release codes if this is your problem. And of course the remedy 
is clear: get yourself a legal copy of Windows.  
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Technical appendix 

Installation issues 

 

A rant that can safely be skipped 
Microsoft seems to delight in making things unnecessarily complex, and over the 
years it has got pretty good at it. The general strategy seems to be to keep users as 
much as possible in the dark about what is actually going on on their PCs.  
Hence, for instance, such unhelpful default settings in Windows Explorer as 
suppressing file extensions (with the consequence that you cannot distinguish between 
an Access database and its lock file, for example) and showing large icons (which 
take up maximum screen space while providing minimal information). Why keeping 
users ignorant and thus helpless would be a good thing I’ll gladly leave to conspiracy 
theorists. 
One of the things Microsoft has come up with is that files should go in different 
places, depending on their kind. So executables go in C:\Program Files, while related 
data files and such go somewhere else, usually buried deeply in some C:\Documents 
and Settings sub folder. It would seem much simpler and transparent to keep related 
files in the same place. 
With Windows Vista new heights of obfuscation have been reached. Vista actually 
refuses to show whole directories, even when you have administrator rights. What’s 
more, while in Windows XP and earlier the ideas of Microsoft about where files 
should go could safely be ignored, Vista and later enforce these rules and software 
that ignores them will not run correctly or at all. So whether I like it or not (and I 
don’t), I’m forced to play along with Microsoft’s game of file hide and seek. 
 
Where are your files? 
After I’ve had my little rant, let’s get down to business. Installation is usually 
painless, the most important thing to remember is that Excel should not be running 
when you install Ersatz. If Excel is running, you will get an error message during 
installation that the add-in could not be installed. Remedy: from now on read the 
messages installation programs display, quit Excel and try again. 
Once you’ve installed Ersatz, where are the files? This depends. For one thing, the 
installation program gives you a choice. But even if you go with the defaults, it still 
depends, in particular on the user rights you have on the PC. If you have administrator 
rights, the Ersatz executable and xll add-in will go into Program Files, while the 
example spreadsheets, temporary data files, and such go into a subdirectory of 
Documents and Setting\All Users\Ersatz. 
If you do not have the rights to install software on your PC, you nevertheless can 
install Ersatz. Ersatz will then install all files under Documents and Setting\Your User 
Name\Ersatz. In this case you may get the message during installation that “You may 
have to install the add-in manually”. In practice this usually turns out to be not the 
case: if you open one of the example spreadsheets and do not get #NAME? errors, 
you’re fine. If you do get those errors, you will have to go to Tools|Add-ins (Excel 
2003 and earlier) or Office Button|Excel Options|Add-ins|Go (Excel 2007) and 
browse where the file ‘Ersatzdll.xll’ is located (now you know why it is important to 
know where your files are). 
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To minimise the pain of finding the Ersatz files, all supplementary files 
(documentation and examples) are accessible through the Start|Programs|Ersatz menu 
that is created by the installation program, and from Ersatz’s Help menu. 
  
A note to IT personnel 
As described above, users can install Ersatz even when they have no administrator 
rights. What is more, when you install Ersatz as administrator, other users may not be 
able to use it. The reason is that the installation program writes to the Windows 
registry key HKEY_LOCAL_USER, not to HKEY_LOCAL_MACHINE. There are 
good reasons for that (which need not be elaborated here), but the upshot is that IT 
should leave it to the users themselves to install the software, even on multiple user 
machines in computer labs. 
 
An unhelpful Excel offer 
Sometimes Excel will offer to move the add-in file ‘Ersatzdll.xll’ to its ‘AddIns’ 
folder. Never, repeat never, accept this. If you do, it will cause all kinds of mischief, 
in particular after upgrading to a newer version of Ersatz. It is one of those features of 
Excel where you really wonder what they were thinking at Microsoft. 
If you have already accepted the offer, here are the steps to undo the harm: 

1. Go to the AddIns directory (you can find where it is by going through the 
steps outlined in the previous section to manually add the add-in: when you 
click the Browse button, Excel will start in the AddIn folder). 

2. Delete the Ersatzdll.xll file. You cannot do so when Excel is running, so you 
have to quit Excel first. 

3. Start Excel. It will complain that it cannot find the Ersatz add-in, and ask you 
whether it should be removed from its list. Click ‘yes’ to that. 

4. Re-install Ersatz. 
After having gone through this, you will probably remember to decline Excel’s offer 
in the future ☺. 

Software 

Ersatz was developed in Object Pascal, using Borland’s Delphi 7 programming 
environment for the 32-bit version, and Embarcadero’s Delphi XE2 for the 64-bit 
version. While many people seem to think C++ is essential for this kind of project, 
Object Pascal is actually just as powerful, easier to use, and beats all C++ compilers 
by its blazing speed. 
Writing xll add-ins for Excel has been described as a black art. While I would hesitate 
to call it that, it certainly requires lots of stamina. The main reasons are that the 
Microsoft Excel xll software development kits are rather short on detail, and that 
Excel proves to be a wilful environment to program for, with a tendency to either 
crash or sulk if anything is wrong rather than be explicit about it. 
Fortunately, where Microsoft left a lot to be desired, some people have stepped in. I 
am indebted to David Bolton whose article “Writing (Non Com) Excel Add-ins in 
Delphi” (which originally appeared in Delphi Magazine but is now floating around on 
the Web), despite some strange errors, gave me the necessary heads up in my first 
steps on this road. An invaluable resource is also Steve Dalton’s “Financial 
applications using Excel add-in development in C/C++” (Dalton 2007). But as the 
title suggests, you need to be able to understand C(++) code to get the most out of this 
book. 
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Excel 2007 is a major upgrade from previous versions. Among other things, it sports a 
‘big grid’, i.e. many more rows and columns than previous versions. This required a 
change in its basic data type, the XLOPER, to the XLOPER12. These special data 
types have the flexibility to describe the different things Excel works with: text, 
numbers, ranges, etc. Excel 2007 is largely backward compatible with add-ins written 
for earlier versions, but Ersatz actively supports the new features of Excel 2007 and 
higher by implementing a dual interface, and presenting the applicable one depending 
on which version of Excel is running. A not yet supported feature of Excel 2007 and 
higher is multi-threaded recalculation, which is planned for Ersatz version 2.0. 
Few people will at this point have the 64-bit version of Excel 2010 and later installed: 
the default installation of Office 2010 and later is still 32-bit. Starting with version 
1.3, Ersatz is compatible with both 32- and 64-bit Excel. The installation program 
contains two versions of the add-in, and installs the correct one depending on the 
Excel version. The Ersatz executable is still 32-bit. 
The Ersatz installation program was written using Inno Setup 5 (www.jrsoftware.org). 
This is one of those amazing things: it is freeware, but beats commercial installation 
software such as InstallShield hands down on features as ease of use, power, and 
flexibility. Recommended. 

Statistical and other scientific sources 

There is a considerable number of scientific routines implemented in Ersatz. There are 
of course the random number generators and the routines to produce random deviates 
from specific distributions, but there are also lots of less visible supporting functions 
to do sorting, indexing, matrix manipulations such as the Cholesky decomposition, 
etc. There is a large and expanding literature on these matters. My general strategy is 
to find a suitable publication, study the math and code (mostly Fortran or C) or 
pseudo-code, and implement an Object Pascal version of it.  
Most of the supporting functions are based on the venerable Numerical Recipes 
(www.nr.com) (Press, Teukolsky  et al. 1992; Press, Teukolsky  et al. 2007). The 
series, there are several editions, is one of those rare things: books on highly technical 
and mathematical subjects that are also a good read.  
Ersatz’s random number generators are all but one based on the Ultimate Random 
Number Suite as programmed by Peter N Roth and Stefan Hoffmeister (which seems 
to be no longer available). The one exception is the Mersenne twister, which is based 
on the algorithm developed by Makoto Matsumoto and Takuji Nishimura (see 
www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html). 
The functions to obtain random deviates from specific distributions are from a number 
of sources (and I have indicated in the Ersatz Function Overview for each function 
what the source is). The canonical book here is the one by Luc Devroye  
(http://cg.scs.carleton.ca/~luc/rnbookindex.html) (Devroye 1986), but I have also used 
Numerical Recipes (Press, Teukolsky  et al. 1992), Gentle (Gentle 2003), and Law & 
Kelton (Law and Kelton 2000), and articles in specialised journals. Special mention 
deserves Wikipedia, whose statistical pages have developed into a very useful 
resource (see: http://en.wikipedia.org/wiki/Statistics). 
 

  



 

Ersatz User Guide 70

Version history  

 
This is a running list of the Ersatz versions, with the latest version first. You can 
check which version you are running by choosing Help|About in the Ersatz 
executable, or typing ‘=ErVersion()’ in an Excel spreadsheet cell15.  

Ersatz version 1.35 

February 2, 2017 

A minor update: improvement in the user interface of the Conditional firing option. 

Ersatz version 1.34 

July 16, 2016 

A minor update: a bug fix. 
A bug surfaced in the Component functions in Excel 2013 and 2016 which made 
Excel crash. Resolved. 

Ersatz version 1.33 

April 6, 2015 

A minor update: a bug fix. 
The rank correlation functions (ErRankCorr, ErDirichletCorr, and 
ErMultinomialCorr) were not compatible with the Multiple runs option, and returned 
the same stream of correlated random numbers for each of the multiple runs. 
Resolved. 

Ersatz version 1.32 

February 26, 2015 

A minor update: a bug fix. 
A bug surfaced in Excel 2013 64 bit on Windows 8.1 which made Excel crash. 
Resolved. 

Ersatz version 1.31 

October 25, 2012 

A minor update: an additional function and two bug fixes. 
 
Additional function: 

 
ErSortedArray  
 
Please consult the Ersatz Function Overview about this function. 
 

Bug fixes: 

1. A bug in ErDataArray could make Excel crash. Resolved. 

2. With more than one ErCondRetrieveArray function in a workbook, retrieved 

arrays could get mixed up. Resolved. 

                                                 
15 Note that both reported versions should always be in sync. If not, something has gone wrong while 
updating Ersatz (e.g. you had Excel running while you were updating). See the User Guide section on 
Installation Issues for further guidance. 
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Ersatz version 1.3 

August 15, 2012 

A major update: support for 64-bit Excel is added. 

Ersatz version 1.2 

April 26, 2012 

An important update, with additional distributions, functions, functionality, and some 
bug fixes. 
 
Additional distributions: 

 

1. Polya. Function name: ErPolya. 

2. Four parameter, scaled Beta. Function name: ErBeta4.  

3. Delaporte. Function name: ErDelaporte. 

4. Correlated Dirichlet. Function names: ErDirichletCorr, ErDirichletCorrIn, 

ErDirichletCorrOut. 

5. Correlated multinomial. Function names: ErMultinomialCorr, 

ErMultinomialCorrIn, ErMultinomialCorrOut. 

Please consult the Ersatz Function Overview for details. 
 
Additional functions: 

 

1. ErData. 

2. ErDataArray. 

3. ErRunDataArray. 

4. ErStore. 

5. ErRetrieve. 

6. ErStoreArray. 

7. ErRetrieveArray. 

8. ErCondStoreArray. 

9. ErCondRetrieveArray. 

Please consult the Ersatz Function Overview about these functions. 
 
Additional functionality: 

1. The Ersatz Help menu now has an entry ‘Example spreadsheets’ which allows 

viewing and opening of the examples that come with the installation. 

2. The Optimization after each iteration routine now has the option of running 

the optimization after the first iteration only. 

Bug fixes: 

 

1. The histogram would sometimes cause an error when an output variable with 

zero standard deviation was chosen. Resolved. 
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2. The scatter plot would throw an unintelligible error when no Ersatz input 

functions were present in the spreadsheet. It now gives an informative error 

message. 

3. The correlation coefficient of the scatter plot would cause a ‘division by zero’ 

error when one of the variables had zero standard deviation. The correlation 

coefficient is now ‘not available’. 

4. In the Dirichlet function the parameters were incorrectly assumed to be 

integers, they are now reals.  

5. The multinomial function in some circumstances would produce too much 

variability for categories with a small number. Resolved. 

Ersatz version 1.13 

March 5, 2011 

A minor update, with some bug fixes. 
1. The workshop version of Ersatz (only available on request) would sometimes 

crash Excel when the Multivariate sensitivity output was chosen. Resolved. 

2. The ErRankCorCom functions would return 0 instead of the mean value 

during the stock taking of Ersatz functions that precedes each run. This could 

cause a fatal error message if you had an ErOutput function that used the 

ErRankCorCom function result such that a 0 value caused an error. Resolved. 

3. The ‘Execute macro before iteration’ option sometimes would cause an error. 

Resolved. 

Ersatz version 1.12 

September 16, 2010 

A minor update, with a bug fix. 
Some installations of Excel crashed when starting up with the Ersatzdll.xll file as an 
active add-in. Resolved. 

Ersatz version 1.11 

January 31, 2010 

A minor update, with some extensions of functionality and some bug fixes. 
The complete list of changes: 

1. The Distribution viewer has added a number of distributions, now a total of 26 

distributions are available for exploration. 

2. The Distribution viewer has an added message field to inform you when your 

typed-in  parameter values are invalid (could not be converted to a number or 

are outside the defined range) or when these values raised a calculation error 

(usually because of overflow: a value in the calculation exceeded the defined 

range for that variable).  

3. Sensitivity analysis was disabled when the Multiple run option was checked. 

With ErRunSenseInput functions defining the input variables of interest in 

your workbook, you can now do multivariate probabilistic sensitivity analysis 

on these input variables, see the User Guide on Multiple runs for details. 

4. Bug fixes: 
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a. In the Distribution viewer sometimes a discrete distribution graph 

would be shifted one number to the right on the X-axis. 

b. The Distribution viewer would throw all kinds of error messages for 

some distributions and parameter values. These messages are now 

intercepted, translated, and reported in the message field (see point 2 

above). 

Ersatz version 1.1 

January 21, 2010 

A major update, because of an important extension of the functionality: Ersatz now 
has four optimization algorithms build-in. In addition there is a minor bug fix. 
The complete list of changes: 

1. Optimization is added, with four different algorithms: two deterministic 

(Quasi-Newton and Down-hill Simplex) and two stochastic (Simulated 

Annealing and Cross-Entropy). There are two added functions (ErMinimize 

and ErMinimizeResult) to give access to the optimization algorithms, a large 

added section on optimization in the User Guide, and two additional example 

workbooks to illustrate their use. 

2. Some of the functions that take Excel ranges as input (such as ErFixed and 

ErEmpirical) could not handle correctly an input range consisting of a single 

row. This bug was introduced in version 1.01, and has now been fixed. 

Ersatz version 1.01 

October 10, 2009 

This is the first version of Ersatz without the ‘beta’ qualification, so the first ‘official’ 
release. It is also a major upgrade from version 1.0 (beta), although many of the 
changes are under the hood and users (in particular of Excel 2003 and earlier) should 
hardly notice.  
The main change is that Ersatz now actively supports Excel 2007. The previous 
version relied on the backward compatibility of Excel 2007, but this version has a 
dual interface and, after querying which Excel version is running, presents the 
appropriate one. This required a major revision of the Ersatz plumbing, and my 
expectation is that an added benefit will be greater stability, in all supported versions 
of Excel. 
Here is the complete list of changes: 

1. Active support of Excel 2007 new features, in particular the ‘big grid’. The 

issue that 2007 users could not run Excel macros from Ersatz has been 

resolved as well. However, multi-threaded recalculation will have to wait until 

version 2.0. 

2. The Excel function wizard now displays help texts on the Ersatz functions and 

the parameters they take. If you do not know what the ‘Excel function wizard’ 

is, check it out in the Excel Help: it is really useful. Unfortunately, Excel does 

not support ‘tool tips’ for user defined (that is: not innate Excel) functions. 

3. The documentation is now complete. In particular, the Ersatz User Guide has 

sections on Error messages, Trouble shooting, Known issues, and a Technical 
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appendix with a detailed discussion of installation issues, among other things. 

This should be your first port of call if things go wrong (or seem to). 

4. Some functions that take Excel ranges as a parameter (such as ErFixed) were 

limited to a maximum range size of 8192 cells. This limit has been lifted. 

5. The Bernoulli distribution has been added (function name: ErBernoulli). 



 

Ersatz User Guide 75

About the author  

Jan Barendregt is the founder and owner of EpiGear International Pty Ltd, Sunrise 
Beach, Queensland, Australia (www.epigear.com). Epigear makes free and low-cost 
software and provides consultancy services. Email: jan@epigear.com.  
Previous positions were at Erasmus University, Netherlands, WHO Geneva, and 
University of Queensland, Australia.   



 

Ersatz User Guide 76

References 

 
 
 
Barendregt, J. J. (2010). "The effect size in uncertainty analysis." Value in Health 

13(4): 388-391. 
Barendregt, J. J. and A. Blakely (Draft). "On the choice of distributions in 

probabilistic bias analysis." 
Briggs, A., M. Sculpher, et al. (1994). "Uncertainty in the economic evaluation of 

health care technologies: the role of sensitivity analysis." Health Econ 2(3): 
95-104. 

Briggs, A., M. Sculpher, et al. (2006). Decision Modelling for Health Economic 
Evaluation. Oxford, Oxford University Press. 

Conover, W. J. (1999). Practical Nonparametric Statistics. New York, John Wiley & 
Sons. 

Dalton, S. (2007). Financial Applications Using Excel Add-in Development in 
C/C++. Chichester, Wiley. 

Devroye, L. (1986). Non-uniform random variate generation. New York, Springer 
Verlag. 

Fox, M. P., T. L. Lash, et al. (2005). "A method to automate probabilistic sensitivity 
analyses of misclassified binary variables." International Journal of 
Epidemiology 34: 1370–1376. 

Gartner, C. E., J. J. Barendregt, et al. (2009). "Predicting the future prevalence of 
cigarette smoking in Australia: how low can we go and by when?" Tob 
Control 18: 183-189. 

Gelman, A., J. B. Carlin, et al. (2004). Bayesian data analysis. Boca Raton, Chapman 
& Hall/CRC. 

Gentle, J. E. (2003). Random number generation and Monte Carlo methods. New 
York, Springer. 

Law and Kelton (2000). Simulation analysis. 
Marsaglia, G. and A. Zaman (1991). "A New Class of Random Number Generators." 

Annals of Applied Probability 3(3): 462-480. 
Press, W. H., S. A. Teukolsky , et al. (1992). Numerical Recipes in FORTRAN 77: 

The Art of Scientific Computing. Cambridge, Cambridge University press. 
Press, W. H., S. A. Teukolsky , et al. (2007). Numerical Recipes: The Art of Scientific 

Computing. Cambridge, Cambridge University press. 
Rubinstein, R. Y. and D. P. Kroese (2008). Simulation and the Monte Carlo method. 

Hoboken, Wiley. 
 
 


